Skip to main content
Log in

Linear Elastic Fracture Mechanics Predicts the Propagation Distance of Frictional Slip

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

When a frictional interface is subject to a localized shear load, it is often (experimentally) observed that local slip events propagate until they arrest naturally before reaching the edge of the interface. We develop a theoretical model based on linear elastic fracture mechanics to describe the propagation of such precursory slip. The model’s prediction of precursor lengths as a function of external load is in good quantitative agreement with laboratory experiments as well as with dynamic simulations, and provides thereby evidence to recognize frictional slip as a fracture phenomenon. We show that predicted precursor lengths depend, within given uncertainty ranges, mainly on the kinetic friction coefficient, and only weakly on other interface and material parameters. By simplifying the fracture mechanics model, we also reveal sources for the observed nonlinearity in the growth of precursor lengths as a function of the applied force. The discrete nature of precursors as well as the shear tractions caused by frustrated Poisson’s expansion is found to be the dominant factors. Finally, we apply our model to a different, symmetric setup and provide a prediction of the propagation distance of frictional slip for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rubinstein, S., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98(22), 226103 (2007). doi:10.1103/PhysRevLett.98.226103

    Article  Google Scholar 

  2. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38(3), 313 (2010). doi:10.1007/s11249-010-9611-7

    Article  Google Scholar 

  3. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. Europhys. Lett. 92(5), 54001 (2010). doi:10.1209/0295-5075/92/54001

    Article  Google Scholar 

  4. Trømborg, J., Scheibert, J., Amundsen, D., Thøgersen, K., Malthe-Sørenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107(7), 074301 (2011). doi:10.1103/PhysRevLett.107.074301

    Article  Google Scholar 

  5. Bouchbinder, E., Brener, E.A., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107(23), 235501 (2011). doi:10.1103/PhysRevLett.107.235501

    Article  Google Scholar 

  6. Amundsen, D.S., Scheibert, J., Thøgersen, K., Trømborg, J., Malthe-Sørenssen, A.: 1D model of precursors to frictional stick-slip motion allowing for robust comparison with experiments. Tribol. Lett. 45(2), 357 (2012). doi:10.1007/s11249-011-9894-3

    Article  Google Scholar 

  7. Kammer, D.S., Yastrebov, V.A., Spijker, P., Molinari, J.F.: On the propagation of slip fronts at frictional interfaces. Tribol. Lett. 48(1), 27 (2012). doi:10.1007/s11249-012-9920-0

    Article  Google Scholar 

  8. Otsuki, M., Matsukawa, H.: Systematic breakdown of Amontons’ law of friction for an elastic object locally obeying Amontons’ law. Sci. Rep. 3, 1586 (2013). doi:10.1038/srep01586

    Article  Google Scholar 

  9. Lapusta, N., Rice, J.R.: Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Geophys J. Res. Solid Earth 108(B4) (2003). doi:10.1029/2001JB000793

  10. Wu, Y., Chen, X.: The scale-dependent slip pattern for a uniform fault model obeying the rate-and state-dependent friction law. J. Geophys. Res. Solid Earth 119(6), 4890 (2014). doi:10.1002/2013JB010779

    Article  Google Scholar 

  11. Rubinstein, S.M., Cohen, G., Fineberg, J.: Cracklike processes within frictional motion: is slow frictional sliding really a slow process? MRS Bull. 33(12), 1181 (2008). doi:10.1557/mrs2008.249

    Article  Google Scholar 

  12. Freund, L.B.: The mechanics of dynamic shear crack propagation. J. Geophys. Res. Solid Earth 84(B5), 2199 (1979). doi:10.1029/JB084iB05p02199

    Article  Google Scholar 

  13. Ampuero, J.P., Ripperger, J., Mai, P.M.: In: Abercrombie, R., McGarr, A., Di Toro, G., Kanamori, H. (eds.) Earthquakes: Radiated Energy and the Physics of Faulting, pp. 255–261. American Geophysical Union, Washington, DC (2006). doi:10.1029/170GM25

  14. Kato, N.: Fracture energies at the rupture nucleation points of large interplate earthquakes. Earth Planet. Sci. Lett. 353–354(0), 190 (2012). doi:10.1016/j.epsl.2012.08.015

    Article  Google Scholar 

  15. Svetlizky, I., Fineberg, J.: Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205 (2014). doi:10.1038/nature13202

    Article  Google Scholar 

  16. Palmer, A.C., Rice, J.R.: The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332(1591), 527 (1973). doi:10.1098/rspa.1973.0040

    Article  Google Scholar 

  17. Andrews, D.: Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. 81(20), 3575 (1976). doi:10.1029/JB081i020p03575

    Article  Google Scholar 

  18. Braun, O., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103(19), 194301 (2009). doi:10.1103/PhysRevLett.103.194301

    Article  Google Scholar 

  19. Kaneko, Y., Ampuero, J.P.: A mechanism for preseismic steady rupture fronts observed in laboratory experiments. Geophys. Res. Lett. 38(21), L21307 (2011). doi:10.1029/2011GL049953

    Article  Google Scholar 

  20. Bar Sinai, Y., Brener, E.A., Bouchbinder, E.: Slow rupture of frictional interfaces. Geophys. Res. Lett. 39(3), L03308 (2012). doi:10.1029/2011GL050554

    Article  Google Scholar 

  21. Bar-Sinai, Y., Spatschek, R., Brener, E.A., Bouchbinder, E.: On the velocity-strengthening behavior of dry friction. J. Geophys. Res. Solid Earth 119(3), 1738 (2014). doi:10.1002/2013JB010586

    Article  Google Scholar 

  22. Radiguet, M., Kammer, D.S., Gillet, P., Molinari, J.F.: Survival of heterogeneous stress distributions created by precursory slip at frictional interfaces. Phys. Rev. Lett. 111(16), 164302 (2013). doi:10.1103/PhysRevLett.111.164302

    Article  Google Scholar 

  23. Radiguet, M., Kammer, D.S., Molinari, J.F.: The role of viscoelasticity on heterogeneous stress fields at frictional interfaces. Mech. Mater. 80, 276 (2015). doi:10.1016/j.mechmat.2014.03.009

  24. Freund, L.: Dynamic Fracture Mechanics. Cambridge University Press, New York (1990)

    Book  Google Scholar 

  25. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, 3rd edn. ASME, New York (2000)

    Book  Google Scholar 

  26. Rice, J.R.: In: Kelly, R. (ed.): Proceedings of the Eighth U.S. National Congress of Applied Mechanics. Western Periodicals Co., North Hollywood, California, pp. 191–216 (1979)

  27. Uenishi, K., Rice, J.R.: Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res. 108(B1), B12042 (2003). doi:10.1029/2001JB001681

    Google Scholar 

  28. Garagash, D.I., Germanovich, L.N.: Nucleation and arrest of dynamic slip on a pressurized fault. J. Geophys. Res. 117(B10), B10310 (2012). doi:10.1029/2012JB009209

    Google Scholar 

  29. Ciccotti, M., Mulargia, F.: Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys. J. Int. 157(1), 474 (2004). doi:10.1111/j.1365-246X.2004.02213.x

    Article  Google Scholar 

  30. Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330(6001), 211 (2010). doi:10.1126/science.1194777

    Article  Google Scholar 

  31. Weertman, J.: Unstable slippage across a fault that separates elastic media of different elastic constants. J. Geophys. Res. 85(B3), 1455 (1980). doi:10.1029/JB085iB03p01455

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this article is supported by the European Research Council (ERCstg UFO-240332) and the Swiss National Science Foundation (grant PMPDP2-145448). JPA was funded by US NSF (grant EAR-1015704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Molinari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammer, D.S., Radiguet, M., Ampuero, JP. et al. Linear Elastic Fracture Mechanics Predicts the Propagation Distance of Frictional Slip. Tribol Lett 57, 23 (2015). https://doi.org/10.1007/s11249-014-0451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-014-0451-8

Keywords

Navigation