Skip to main content
Log in

In Situ X-Ray Diffraction Study of Phase Transformation of Steel in Scuffing Process

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We developed a novel in situ observation method associated with synchrotron radiation X-ray diffraction (XRD) that enables us to simultaneously monitor structural changes of materials, images at frictional interfaces, friction force and temperature with a time resolution on the order of tens of milliseconds. The in situ method was applied to study scuffing process of martensitic steel under a dry condition. The result shows that during scuffing, martensite to austenite phase transformation occurred with plastic flow. The generated austenite phase disappeared when the shear test was stopped. The austenite was present at a surface temperature lower than the nominal austenitisation temperature. After intermittent occurrences of the austenitisation with local plastic flow, the scuffing feature showed a larger amount of austenite, higher friction and greater plastic flow. The XRD spectra suggest that some metallurgical properties of the near-surface material of the steel may change at the scuffing-mode transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dyson, A.: Scuffing—a review. Tribol. Int. 8, 77–87 (1975)

    Article  Google Scholar 

  2. Blok, H.: The flash temperature concept. Wear 6, 483–494 (1963)

    Article  Google Scholar 

  3. Johnson, R.R., Dow, T.A., Zhang, Y.Y.: Thermoelastic instability in elliptic contact between two sliding surfaces. Trans. ASME J. Tribol. 110, 80–86 (1988)

    Article  Google Scholar 

  4. Ludema, K.C.: A review of scuffing and running-in of lubricated surface with asperities and oxides in perspective. Wear 100, 315–331 (1984)

    Article  Google Scholar 

  5. Markov, D., Kelly, D.: Mechanisms of adhesion-initiated catastrophic wear: pure sliding. Wear 239, 189–210 (2000)

    Article  Google Scholar 

  6. Sheiretov, T., Yoon, H., Cusano, C.: Scuffing under dry sliding conditions—part I: experimental studies. Tribol. Trans. 41, 435–446 (1998)

    Article  Google Scholar 

  7. Sheiretov, T., Yoon, H., Cusano, C.: Scuffing under dry sliding conditions—part II: theoretical studies. Tribol. Trans. 41, 447–458 (1998)

    Article  Google Scholar 

  8. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.: Formation of austenite during scuffing failure of SAE 4340 steel. Wear 256, 159–167 (2004)

    Article  Google Scholar 

  9. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.: Evidence of scuffing initiation by adiabatic shear instability. Wear 258, 1471–1478 (2005)

    Article  Google Scholar 

  10. Ajayi, O.O., Hersberger, J.G., Zhang, J., Yoon, H., Fenske, G.R.: Microstructural evolution during scuffing of hardened 4340 steel—implication for scuffing mechanism. Tribol. Int. 38, 277–282 (2005)

    Article  Google Scholar 

  11. Ajayi, O.O., Martin, C.L., Erck, R.A., Fenske, G.R.: Scuffing mechanism of near-surface material during lubricated severe sliding contact. Wear 271, 1750–1753 (2011)

    Article  Google Scholar 

  12. Ajayi, O.O., Martin, C.L., Erck, R.A., Fenske, G.R.: Analytical predictive modeling of scuffing initiation in metallic materials in sliding contact. Wear 301, 57–61 (2013)

    Article  Google Scholar 

  13. Enthoven, J., Spikes, H.A.: Infrared and visual study of the mechanisms of scuffing. Tribol. Trans. 39, 441–447 (1996)

    Article  Google Scholar 

  14. Yagi, K., Ebisu, Y., Sugimura, J., Kajita, S., Ohmori, T., Suzuki, A.: In situ observation of wear process before and during scuffing in sliding contact. Tribol. Lett. 43, 361–368 (2011)

    Article  Google Scholar 

  15. Li, H., Yagi, K., Sugimura, J., Kajita, S., Shinyoshi, T.: Role of wear particles in scuffing initiation. Tribol. Online 8, 285–294 (2013)

    Article  Google Scholar 

  16. Chandrasekaran, M., Batchelor, A.W., Loh, N.L.: Direct observation of frictional seizure of mild steel sliding on aluminum by X-ray imaging Part I Methods. J. Mater. Sci. 35, 1589–1596 (2000)

    Article  Google Scholar 

  17. Chandrasekaran, M., Batchelor, A.W., Loh, N.L.: Direct observation of frictional seizure of mild steel sliding on aluminum by X-ray imaging Part II Mechanism. J. Mater. Sci. 35, 1597–1602 (2000)

    Article  Google Scholar 

  18. Chandrasekaran, M., Batchelor, A.W., Loh, N.L.: Frictional seizure of aluminium observed by X-ray imaging. Tribol. Int. 35, 297–308 (2002)

    Article  Google Scholar 

  19. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 27, 108–112 (2013)

    Article  Google Scholar 

  20. Michler, J., Rabe, R., Bucaille, J.L., Moser, B., Schwaller, P., Breguet, J.M.: Investigation of wear mechanisms through in situ observation during microscratching inside the scanning electron microscope. Wear 259, 18–26 (2005)

    Article  Google Scholar 

  21. Ribeiro, R., Shan, Z., Minor, A.M., Liang, H.: In situ observation of nano-abrasive wear. Wear 263, 1556–1559 (2007)

    Article  Google Scholar 

  22. Ishida, T., Sato, T., Fujita, H.: In-situ observation of shear deformation of gold single real contact point at the nanoscale. Tribol. Online 7, 127–131 (2012)

    Article  Google Scholar 

  23. Hase, A., Mishina, H., Wada, M.: Acoustic emission in elementary processes of friction and wear: in-situ observation of friction surface and AE signals. J. Adv. Mech. Des. Syst. Manuf. 3, 333–344 (2009)

    Google Scholar 

  24. Cullity, B.D.: Elements of X-Ray Diffraction. Addison-Wesley, Reading, MA (1956)

    Google Scholar 

  25. Japan Institute of Metals and Materials: Metal Data Book. Maruzen, Tokyo (in Japanese) (1974)

  26. Davis, J.R.: Metals Handbook: Desk, 2nd edn. ASM International, Ohio (1998)

    Google Scholar 

  27. Lee, Y.K., Shin, H.C., Leem, D.S., Choi, J.Y., Jin, W., Choi, C.S.: Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt-%) martensitic stainless steel. Mater. Sci. Technol. 19, 393–398 (2003)

    Article  Google Scholar 

  28. Danon, A., Servant, C., Alamo, A., Brachet, J.C.: Heterogeneous austenite grain growth in 9Cr martensitic steels: influence of the heating rate and the austenitization temperature. Mater. Sci. Eng. A 348, 122–132 (2003)

    Article  Google Scholar 

  29. Akimoto, S., Suzuki, T., Yagi, T., Shimomura, O.: Phase diagram of iron determined by high-pressure/temperature X-ray diffraction using synchrotron radiation. High Press. Res. Miner. Phys: A Volume in Honor of Syun-iti Akimoto, 149–154 (2013). doi:10.1029/GM039p0149/summary

  30. Bhadeshia, H.K.D.H.: Steels for bearings. Prog. Mater. Sci. 57, 268–435 (2012)

    Article  Google Scholar 

  31. Kundrák, J., Gácsi, A., Gyáni, K., Bana, V., Tomolya, G.: X-ray diffraction investigation of white layer development in hard-turning surfaces. Int. J. Adv. Manuf. Technol. 62, 457–469 (2012)

    Article  Google Scholar 

  32. Ramesh, A., Melkote, S.N., Allard, L.F., Riester, L., Watkins, T.R.: Analysis of white layers formed in hard turning of AISI 52100 steel. Mater. Sci. Eng. A 390, 88–97 (2005)

    Article  Google Scholar 

  33. Hosseini, S.B., Beno, T., Klement, U., Kaminski, J., Ryttberg, K.: Cutting temperatures during hard turning—measurements and effects on white layer formation in AISI 52100. J. Mater. Process. Technol. 214, 1293–1300 (2014)

    Article  Google Scholar 

  34. Duffy, J., Chi, Y.C.: On the measurement of local strain and temperature during the formation of adiabatic shear band. Mater. Sci. Eng. A 157, 195–210 (1992)

    Article  Google Scholar 

  35. Cho, K.M., Lee, S., Nutt, S.R., Duffy, J.: Adiabatic shear band formation during dynamic torsional deformation of an HY-100 steel. Acta. Metall. Mater. 41, 923–932 (1993)

    Article  Google Scholar 

  36. Duan, C., Kong, W., Hao, Q., Zhou, F.: Modeling of white layer thickness in high speed machining of hardened steel based on phase transformation mechanism. Int. J. Adv. Manuf. Technol. 69, 59–70 (2013)

    Article  Google Scholar 

  37. Han, S., Melkote, S.N., Haluska, M.S., Watkins, T.R.: White layer formation due to phase transformation in orthogonal machining of AISI 1045 annealed steel. Mater. Sci. Eng. A 488, 195–204 (2008)

    Article  Google Scholar 

  38. Popov, V.L.: Contact Mechanics and Friction Physical Principles and Application. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Y. Hayashi at Toyota Central R&D Labs., Inc., who performed the XRD data acquisition. The synchrotron radiation experiments were performed at the BL33XU line of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2013B7021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Kajita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajita, S., Yagi, K., Izumi, T. et al. In Situ X-Ray Diffraction Study of Phase Transformation of Steel in Scuffing Process. Tribol Lett 57, 6 (2015). https://doi.org/10.1007/s11249-014-0443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-014-0443-8

Keywords

Navigation