Tribology Letters

, Volume 56, Issue 3, pp 481–490 | Cite as

Effects of Interfacial Bonding on Friction and Wear at Silica/Silica Interfaces

Original Paper

Abstract

Static friction between amorphous silica surfaces with a varying number of interfacial siloxane (Si–O–Si) bridges was studied using molecular dynamic simulations. Static friction was found to increase linearly with the applied normal pressure, which can be explained in the framework of Prandlt–Tomlinson’s model. Friction force was found to increase with concentration of siloxane bridges, but with a decreasing gradient, with the latter being due to interactions between neighboring siloxane bridges. In addition, we identified atomic-level wear mechanisms of silica. These mechanisms include both transfer of individual atoms accompanied by breaking interfacial siloxane bridges and transfer of atomic cluster initialized by rupturing of surface Si–O bonds. Our simulations showed that small clusters are continually formed and dissolved at the sliding interface, which plays an important role in wear at silica/silica interface.

Keywords

Silica wear Frictional aging Molecular dynamics 

References

  1. 1.
    Lasky, J.B.: Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48, 78–80 (1985)CrossRefGoogle Scholar
  2. 2.
    Ventosa, C., Rieutord, F., Libralesso, L., Morales, C., Fournel, F., Moriceau, H.: Hydrophilic low-temperature direct wafer bonding. J. Appl. Phys. (2008). doi:10.1063/1.3040701
  3. 3.
    Taran, E., Donose, E., Vakarelski, I.U., Higashitani, K.: pH dependence of friction forces between silica surfaces in solutions. J. Colloid Interface Sci. 297, 199–203 (2006)CrossRefGoogle Scholar
  4. 4.
    Scholz, C.: Earthquakes and friction laws. Nature 391, 37–42 (1998)CrossRefGoogle Scholar
  5. 5.
    Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011)CrossRefGoogle Scholar
  6. 6.
    Chandross, M., Webb III, E.B., Stevens, M.J., Grest, G.S.: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.166103 Google Scholar
  7. 7.
    Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)CrossRefGoogle Scholar
  8. 8.
    Toro, G.D., Goldsby, D.L., Tullis, T.E.: Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004)CrossRefGoogle Scholar
  9. 9.
    Xu, J., Kato, K.: Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245, 61–75 (2000)CrossRefGoogle Scholar
  10. 10.
    Heim, L., Blum, J., Preuss, M., Butt, H.: Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 16, 3328–3331 (1999)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects (2006). doi:10.1103/PhysRevLett.96.236102 Google Scholar
  12. 12.
    Subhalakshmi, K., Devaprakasam, D., Math, S., Biswas, S.K.: Use of Eyring equation to explore the frictional responses of a –CF3 and a –CH3 terminated monolayers self-assembled on silicon substrate. Tribol. Lett. 32, 1–11 (2008)CrossRefGoogle Scholar
  13. 13.
    Taran, E., Kanda, Y., Vakarelski, I.U., Higashitani, K.: Nonlinear friction characteristics between silica surfaces in high pH solution. J. Colloid Interface Sci. 307, 425–432 (2007)CrossRefGoogle Scholar
  14. 14.
    Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. Physicochem. Eng. Asp. 173, 1–38 (2000)CrossRefGoogle Scholar
  15. 15.
    Plößl, A., Kräuter, G.: Wafer direct bonding: tailoring adhesion between brittle materials. Mater. Sci. Eng. R 25, 1–88 (1999)CrossRefGoogle Scholar
  16. 16.
    Vigil, G., Xu, Z., Steinberg, S., Israelachvili, J.: Interactions of silica surfaces. J. Colloid Interface Sci. (1994). doi:10.1006/jcis.1994.1242 Google Scholar
  17. 17.
    Riedo, E., Lévy, F., Brune, H.: Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. (2002). doi:10.1103/PhysRevLett.88.185505 Google Scholar
  18. 18.
    Szoszkiewicz, R. Riedo, E.: Nucleation time of nanoscale water bridges. Phys. Rev. Lett. (2005). doi:10.1103/PhysRevLett.95.135502
  19. 19.
    Adler, J.J., Rabinovich, Y.I., Moudgil, B.M.: Origins of the non-DLVO force between glass surfaces in aqueous solution. J. Colloid Interface Sci. 237, 249–258 (2001)CrossRefGoogle Scholar
  20. 20.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefGoogle Scholar
  21. 21.
    Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)CrossRefGoogle Scholar
  22. 22.
    Bocquet, L., Charlaix, E., Ciliberto, S., Crassous, J.: Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998)CrossRefGoogle Scholar
  23. 23.
    Dieterich, J.H.: Time-dependent friction in rocks. J. Geophys. Res. 77, 3690–3697 (1972)CrossRefGoogle Scholar
  24. 24.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)CrossRefGoogle Scholar
  25. 25.
    Dieterich, J.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)CrossRefGoogle Scholar
  26. 26.
    Capozza, R., Barel, I., Urbakh, M.: Probing and tuning frictional aging at the nanoscale. Sci. Rep. (2013). doi:10.1038/srep01896 Google Scholar
  27. 27.
    Beeler, N.M.: Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation. Pure Appl. Geophys. 161, 1853–1876 (2004)CrossRefGoogle Scholar
  28. 28.
    Nakatani, M., Scholz, C.: Frictional healing of quartz gouge under hydrothermal conditions: 2. Quantitative interpretation with a physical model. J. Geophys. Res. (2004). doi:10.1029/2003JB002938 Google Scholar
  29. 29.
    Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001)CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Szlufarska, I.: Chemical origins of frictional aging. Phys. Rev. Lett. (2012). doi:10.1103/PhysRevLett.109.186102
  31. 31.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  32. 32.
    Mo, Y., Turner, K.T., Szlufarska, I.: Origin of the isotope effect on solid friction. Phys. Rev. B (2009). doi:10.1103/PhysRevB.80.155438
  33. 33.
    Fogarty, J.C., Aktulga, H.M., Grama, A.Y., van Duin, A.C.T., Pandit, S.A.: A reactive molecular dynamics simulation of the silica-water interface. J. Chem. Phys. (2010). doi:10.1063/1.3407433 Google Scholar
  34. 34.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. (1995). doi:10.1006/jcph.1995.1039 Google Scholar
  35. 35.
    Hölscher, H., Schirmeisen, A., Schwarz, U.D.: Principles of atomic friction: from sticking atoms to superlubric sliding. Philos. Trans. A Math. Phys. Eng. Sci. 366, 1383–1404 (2008)CrossRefGoogle Scholar
  36. 36.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.92.134301
  37. 37.
    Evans, M., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)CrossRefGoogle Scholar
  38. 38.
    Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. (2003). doi:10.1103/PhysRevLett.91.084502 Google Scholar
  39. 39.
    Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177–180 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Materials Science ProgramUniversity of WisconsinMadisonUSA
  2. 2.Materials Science and Engineering DepartmentMassachusetts Institute of TechnologyBostonUSA
  3. 3.Department of Materials Science and EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations