Skip to main content
Log in

Friction Properties of Fluorinated Graphitized Carbon Blacks

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribologic properties of graphitized carbon blacks and their fluorinated derivatives are investigated as a function of the fluorination rate. Very low intrinsic friction coefficients are obtained for highly fluorinated compounds. The correlation of the tribologic results and structural investigations of the initial compounds by TEM strongly suggests that the friction mechanisms involve surface effects in the early stage of friction. Long-term tribologic experiments and Raman analyses point out an evolution of the structure and composition of the tribofilms during the friction process leading to similar friction properties of the tribofilms. Wear studies revealed that highly fluorinated derivatives appear less efficient than pristine and weakly fluorinated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mansot, J.L., Hallouis, M., Martin, J.M.: Colloidal antiwear additives. Part two: tribological behaviour of colloidal additives in mild wear regime. Colloid. Surf. A. 75, 25–31 (1993)

  2. Mansot, J.L., Martin, J.M: Nanolubricants. Wiley, New York 2008 Chapter 4

  3. Mansot, J.L., Martin, J.M., Bercion, Y., Romana, L.: Nanolubrication. Braz. J. Phys. 39(1), 186–197 (2009)

    Google Scholar 

  4. Zaidi, H., Robert, F., Paulmier, D.: Influence of adsorbed gases on the surface energy of graphite: consequences on the friction behaviour. Thin. Solid. Film. 264, 46–51 (1995)

    Article  Google Scholar 

  5. Wahl, K.J., Belin, M., Singer, I.L.: A triboscopic investigation of the wear and friction of MoS2 in a reciprocating sliding contact. Wear 214, 212–220 (1998)

    Article  Google Scholar 

  6. Zhang, L.L., Tu, J.P., Wu, H.M., Yang, Y.Z.: WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil. Mater. Sci. Eng. A 454, 487–491 (2007)

    Article  Google Scholar 

  7. Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Popovitz-Biro, R., Feldman, Y., Tenne, R.: Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255(7–12), 785–793 (2003)

    Article  Google Scholar 

  8. Rao, C.N.R., Seshadri, R., Govindaraj, A., Sen, R.: Fullerenes, nanotubes, onions and related carbon structures. Mater. Sci. Eng.: R: Rep. 15(6), 209–262 (1995)

    Article  Google Scholar 

  9. Yao, Y., Wang, X., Guo, J., Yang, X., Xu, B.: Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62(16), 2524–2527 (2008)

    Article  Google Scholar 

  10. Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J.M., Mieno, T.: Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 37(11–12), 1013–1018 (2004)

    Article  Google Scholar 

  11. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Cohen, S., Tenne, R.: The effect of hollow nanoparticles of WS2 on friction and wear. Tribol. Ser. 36, 567–573 (1999)

    Article  Google Scholar 

  12. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  Google Scholar 

  13. Joly-Pottuz, L., Dassenoy, F., Martin, J.M., Vrbanic, D., Mihailovic, D., Vogel, W., Montagnac, G.: Tribological properties of Mo-S-I nanowires as additive in oil. Tribol. Lett. 18, 385–393 (2005)

    Article  Google Scholar 

  14. Thomas, P., Himmel, D., Mansot, J.L., Dubois, M., Guérin, K., Zhang, W., Hamwi, A.: Tribological properties of fluorinated carbon nanofibres. Tribol. Lett. 34, 49–59 (2009)

    Article  Google Scholar 

  15. Thomas, P., Himmel, D., Mansot, J.L., Zhang, W., Dubois, M., Guérin, K., Hamwi, A.: Friction properties of fluorinated carbon nanodiscs and nanocones. Tribol. Lett. 41, 353–362 (2011)

    Article  Google Scholar 

  16. Kannan, A.M., Menghal, A., Barsukov, I.V.: Gas diffusion layer using a new type of graphitized nano-carbon PUREBLACK® for proton exchanged membrane fuell cells. Electrochem. Commun. 8, 887–891 (2006)

    Article  Google Scholar 

  17. Chamssedine, F., Dubois, M., Guérin, K., Giraudet, J., Masin, F., Ivanov, D.A., Vidal, L., Yazami, R., Hamwi, A.: Reactivity of carbon nanofibers with fluorine gas. Chem. Mater. 19, 161–172 (2007)

    Article  Google Scholar 

  18. Zhang, W., Guérin, K., Dubois, M., Fawal, Z.E., Ivanov, D.A., Vidal, L., Hamwi, A.: Carbon nanofibers fluorinated using TbF4 as fluorinating agent. Part I: structural properties. Carbon 46(7), 1010–1016 (2008)

    Article  Google Scholar 

  19. Zhang, W., Spinelle, L., Dubois, M., Guérin, K., Kharbache, H., Masin, F., Kharitonov, A.P., Hamwi, A., Brunet, J., Varenne, C., Pauly, A., Thomas, P., Himmel, D., Mansot, J.L.: New synthesis methods for fluorinated carbon nanofibres and applications. J. Fluor. Chem. 131(6), 676–683 (2010)

    Article  Google Scholar 

  20. Disa, E.: Synthèse de nanolubrifiants à base de carbones fluorés. PhD Thesis, Clermont-Ferrand (2012)

  21. Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002)

    Article  Google Scholar 

  22. Dresselhaus, M.S., Pimenta, M.A., Ecklund; P.C., Dresselhaus, G.: Raman scattering in fullerenes and related carbon-based materials. In: Weber, W.H., Merlin, R. (eds), pp. 315–364, Springer, New York (2000)

  23. Merlin, R., Pinczuk, A., Weber, W.H.: Overview of phonon Raman scattering in solids. In: Weber, W.H., Merlin, R. (eds), pp. 1–29. Springer, New York (2000)

  24. Gupta, V., Nakajima, T., Zemva, B.: Raman scattering of highly fluorinated graphite. J. Fluor. Chem. 110, 145–151 (2001)

    Article  Google Scholar 

  25. Gupta, V., Nakajima, T., Ohzawa, Y., Zemva, B.: A study on the formation of graphite fluorides by Raman spectroscopy. J. Fluor. Chem. 120, 143–150 (2003)

    Article  Google Scholar 

  26. Panich, A.M.: Nuclear magnetic resonance study of fluorine–graphite intercalation compounds and graphite fluorides. Synth. Met. 100(2), 169–185 (1999)

    Article  Google Scholar 

  27. Giraudet, J., Dubois, M., Hamwi, A., Stone, W.E.E., Pirotte, P., Masin, F.: Solid-State NMR (19F and 13C) study of graphite monofluoride (CF)n: 19F spin−lattice magnetic relaxation and 19F/13C distance determination by Hartmann−Hahn cross polarization. J. Phys. Chem. B. 109(1), 175–181 (2004)

    Article  Google Scholar 

  28. Giraudet, J., Dubois, M., Guérin, K., Pinheiro, J.P., Hamwi, A., Stone, W.E.E., Pirotte, P., Masin, F.: Solid-state F-19 and C-13 NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: low-field and high-resolution studies. J. Solid. State. Chem. 178, 1262–1268 (2005)

    Article  Google Scholar 

  29. Dubois, M., Giraudet, J., Guérin, K., Hamwi, A., Fawal, Z., Pirotte, P.: EPR and solid-state NMR studies of poly(dicarbon monofluoride) (C2F)n. J. Phys. Chem. B. 110(24), 11800–11808 (2006)

    Article  Google Scholar 

  30. Giraudet, J., Dubois, M., Guérin, K., Delabarre, C., Hamwi, A., Masin, F.: Solid-state NMR study of the post-fluorination of (C2.5F)n fluorine−GIC. J. Phys. Chem. B. 111(51), 14143–14151 (2007)

    Article  Google Scholar 

  31. Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, P., Mansot, J.L., Molza, A. et al. Friction Properties of Fluorinated Graphitized Carbon Blacks. Tribol Lett 56, 259–271 (2014). https://doi.org/10.1007/s11249-014-0406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0406-0

Keywords

Navigation