An Adhesion-Dominated Rolling Friction Regime Unique to Micro-scale Ball Bearings

Abstract

We demonstrate that micro-scale rolling bearings exhibit friction and wear properties markedly different from their macro-scale counterparts. A microfabricated testing platform uses variable rolling element diameters or vapor-phase lubricated interfaces to independently test friction force with varying contact area and surface energy. A linear, consistent, relationship between friction force and contact area is observed among different rolling element diameters. When surface free energy is altered through the introduction of vapor-phase lubrication, an 83 % decrease in friction is observed. When coupled with observed ball material adhered to the raceway, there is strong evidence for adhesion-dominated rolling friction regime at the micro-scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Eldredge, K.R., Tabor, D.: The mechanism of rolling friction. I. The plastic range. Proc. Royal Soc. A 229(1177), 181–198 (1955). doi:10.1098/rspa.1955.0081

    Article  Google Scholar 

  2. 2.

    Tabor, D.: The mechanism of rolling friction. II. The elastic range. Proc. Royal Soc. A 229(1177), 198–220 (1955). doi:10.1098/rspa.1955.0082

    Article  Google Scholar 

  3. 3.

    Tabor, D.: Elastic work involved in rolling a sphere on another surface. Brit. J. Appl. Phys. 6, 79–81 (1955)

    Article  Google Scholar 

  4. 4.

    Mehregany, M., Senturia, S.D., Lang, J.H.: Friction and wear in microfabricated harmonic side-drive motors. In: IEEE (ed.) Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, Hilton Head, SC, 4-7 Jun 1990 (1990), pp. 17–22. Transducers Research Foundation

  5. 5.

    Yoxall, B.E., Chan, M.L., Harake, R.S., Pan, T.R., Horsley, D.A.: Rotary liquid droplet microbearing. J. Microelectromech. Syst. 21(3), 721–729 (2012). doi:10.1109/jmems.2012.2185218

    Article  Google Scholar 

  6. 6.

    Chan, M.L., Yoxall, B., Park, H., Kang, Z.Y., Izyumin, I., Chou, J., Megens, M.M., Wu, M.C., Boser, B.E., Horsley, D.A.: Design and characterization of MEMS micromotor supported on low friction liquid bearing. Sens. Actuators A Phys. 177, 1–9 (2012). doi:10.1016/j.sna.2011.08.003

    Article  Google Scholar 

  7. 7.

    Frechette, L.G., Jacobson, S.A., Breuer, K.S., Ehrich, F.F., Ghodssi, R., Khanna, R., Wong, C.W., Zhang, X., Schmidt, M.A., Epstein, A.H.: High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microelectromech. Syst. 14(1), 141–152 (2005). doi:10.1109/jmemes.2004.839008

    Article  Google Scholar 

  8. 8.

    Ghodssi, R., Hanrahan, B., Beyaz, M.: Microball bearing technology for MEMS devices and integrated microsystems. In: IEEE (ed.) 16th International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers 2011), Beijing, China, June 5-9, (2011), pp. 1789–1794

  9. 9.

    Waits, C.M., McCarthy, M., Ghodssi, R.: A microfabricated spiral-groove turbopump supported on microball bearings. J. Microelectromech. Syst. 19(1), 99–109 (2010)

    Article  Google Scholar 

  10. 10.

    Waits, C.M.: A low-wear planar-contact silicon raceway for microball bearing applications. In: U.S. Army Research Laboratory Technical Report, ARL-TR-4796. vol. ARL-TR-4796 (2009)

  11. 11.

    Ghalichechian, N., Modafe, A., Lang, J.H., Ghodssi, R.: Dynamic characterization of a linear electrostatic micromotor supported on microball bearings. Sens. Actuators A Phys. 136(2), 496–503 (2007)

    Article  Google Scholar 

  12. 12.

    Ghalichechian, N., Modafe, A., Beyaz, M.I., Ghodssi, R.: Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. J. Microelectromech. Syst. 17(3), 632–642 (2008)

    Article  Google Scholar 

  13. 13.

    Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., Suzuki, S.: Electrostatic micro power generation from low-frequency vibration such as human motion. J. Micromech. Microeng. 19(9), 094002 (2009)

    Article  Google Scholar 

  14. 14.

    McCarthy, M., Waits, C.M., Ghodssi, R.: Dynamic friction and wear in a planar-contact encapsulated microball bearing using an integrated microturbine. J. Microelectromech. Syst. 18(2), 263–273 (2009)

    Article  Google Scholar 

  15. 15.

    McCarthy, M., Waits, C.M., Beyaz, M.I., Ghodssi, R.: A rotary microactuator supported on encapsulated microball bearings using an electro-pneumatic thrust balance. J. Micromech. Microeng. 19(9), 094007 (2009)

    Article  Google Scholar 

  16. 16.

    Hertz, H.: On the contact of rigid elastic solids. Gesammelte Weke 1, 155–195 (1895)

  17. 17.

    Kendall, K.: Rolling friction and adhesion between smooth solids. Wear 33(2), 351–358 (1975)

    Article  Google Scholar 

  18. 18.

    Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1999)

    Article  Google Scholar 

  19. 19.

    Asay, D.B., Kim, S.H.: Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124(17), 174712 (2006). doi:10.1063/1.2192510

    Article  Google Scholar 

  20. 20.

    Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24(1), 155–159 (2007). doi:10.1021/la702598g

    Article  Google Scholar 

  21. 21.

    Asay, D., Dugger, M., Kim, S.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29(1), 67–74 (2008). doi:10.1007/s11249-007-9283-0

    Article  Google Scholar 

  22. 22.

    Jones, R., Pollock, H.M., Cleaver, J., Hodges, C.: Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 18, 8045–8055 (2002)

    Article  Google Scholar 

  23. 23.

    T. A. Stolarski, S.T.: Rolling contacts. Tribology in practice series. Professional engineering publications, (2001)

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation under award no. 0901411. We would also like to acknowledge the Maryland Nanocenter and the U.S. Army Research Laboratory Cleanroom Staff.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brendan M. Hanrahan.

Additional information

Brendan M. Hanrahan was formerly with Materials Science and Engineering Department, University of Maryland, College Park, College Park, MD, 20704, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanrahan, B.M., Misra, S., Beyaz, M.I. et al. An Adhesion-Dominated Rolling Friction Regime Unique to Micro-scale Ball Bearings. Tribol Lett 56, 215–221 (2014). https://doi.org/10.1007/s11249-014-0401-5

Download citation

Keywords

  • Vapor- phase lubrication
  • Silicon
  • Ball bearings
  • Adhesive wear
  • MEMS