Tribology Letters

, Volume 56, Issue 2, pp 215–221 | Cite as

An Adhesion-Dominated Rolling Friction Regime Unique to Micro-scale Ball Bearings

  • Brendan M. Hanrahan
  • Saswat Misra
  • Mustafa I. Beyaz
  • Jeremy H. Feldman
  • Christopher M. Waits
  • Reza Ghodssi
Original Paper


We demonstrate that micro-scale rolling bearings exhibit friction and wear properties markedly different from their macro-scale counterparts. A microfabricated testing platform uses variable rolling element diameters or vapor-phase lubricated interfaces to independently test friction force with varying contact area and surface energy. A linear, consistent, relationship between friction force and contact area is observed among different rolling element diameters. When surface free energy is altered through the introduction of vapor-phase lubrication, an 83 % decrease in friction is observed. When coupled with observed ball material adhered to the raceway, there is strong evidence for adhesion-dominated rolling friction regime at the micro-scale.


Vapor- phase lubrication Silicon Ball bearings Adhesive wear MEMS 



This work was supported by the U.S. National Science Foundation under award no. 0901411. We would also like to acknowledge the Maryland Nanocenter and the U.S. Army Research Laboratory Cleanroom Staff.

Supplementary material

11249_2014_401_MOESM1_ESM.docx (258 kb)
Supplementary material 1 (DOCX 258 kb)


  1. 1.
    Eldredge, K.R., Tabor, D.: The mechanism of rolling friction. I. The plastic range. Proc. Royal Soc. A 229(1177), 181–198 (1955). doi: 10.1098/rspa.1955.0081 CrossRefGoogle Scholar
  2. 2.
    Tabor, D.: The mechanism of rolling friction. II. The elastic range. Proc. Royal Soc. A 229(1177), 198–220 (1955). doi: 10.1098/rspa.1955.0082 CrossRefGoogle Scholar
  3. 3.
    Tabor, D.: Elastic work involved in rolling a sphere on another surface. Brit. J. Appl. Phys. 6, 79–81 (1955)CrossRefGoogle Scholar
  4. 4.
    Mehregany, M., Senturia, S.D., Lang, J.H.: Friction and wear in microfabricated harmonic side-drive motors. In: IEEE (ed.) Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, Hilton Head, SC, 4-7 Jun 1990 (1990), pp. 17–22. Transducers Research FoundationGoogle Scholar
  5. 5.
    Yoxall, B.E., Chan, M.L., Harake, R.S., Pan, T.R., Horsley, D.A.: Rotary liquid droplet microbearing. J. Microelectromech. Syst. 21(3), 721–729 (2012). doi: 10.1109/jmems.2012.2185218 CrossRefGoogle Scholar
  6. 6.
    Chan, M.L., Yoxall, B., Park, H., Kang, Z.Y., Izyumin, I., Chou, J., Megens, M.M., Wu, M.C., Boser, B.E., Horsley, D.A.: Design and characterization of MEMS micromotor supported on low friction liquid bearing. Sens. Actuators A Phys. 177, 1–9 (2012). doi: 10.1016/j.sna.2011.08.003 CrossRefGoogle Scholar
  7. 7.
    Frechette, L.G., Jacobson, S.A., Breuer, K.S., Ehrich, F.F., Ghodssi, R., Khanna, R., Wong, C.W., Zhang, X., Schmidt, M.A., Epstein, A.H.: High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microelectromech. Syst. 14(1), 141–152 (2005). doi: 10.1109/jmemes.2004.839008 CrossRefGoogle Scholar
  8. 8.
    Ghodssi, R., Hanrahan, B., Beyaz, M.: Microball bearing technology for MEMS devices and integrated microsystems. In: IEEE (ed.) 16th International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers 2011), Beijing, China, June 5-9, (2011), pp. 1789–1794Google Scholar
  9. 9.
    Waits, C.M., McCarthy, M., Ghodssi, R.: A microfabricated spiral-groove turbopump supported on microball bearings. J. Microelectromech. Syst. 19(1), 99–109 (2010)CrossRefGoogle Scholar
  10. 10.
    Waits, C.M.: A low-wear planar-contact silicon raceway for microball bearing applications. In: U.S. Army Research Laboratory Technical Report, ARL-TR-4796. vol. ARL-TR-4796 (2009)Google Scholar
  11. 11.
    Ghalichechian, N., Modafe, A., Lang, J.H., Ghodssi, R.: Dynamic characterization of a linear electrostatic micromotor supported on microball bearings. Sens. Actuators A Phys. 136(2), 496–503 (2007)CrossRefGoogle Scholar
  12. 12.
    Ghalichechian, N., Modafe, A., Beyaz, M.I., Ghodssi, R.: Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. J. Microelectromech. Syst. 17(3), 632–642 (2008)CrossRefGoogle Scholar
  13. 13.
    Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., Suzuki, S.: Electrostatic micro power generation from low-frequency vibration such as human motion. J. Micromech. Microeng. 19(9), 094002 (2009)CrossRefGoogle Scholar
  14. 14.
    McCarthy, M., Waits, C.M., Ghodssi, R.: Dynamic friction and wear in a planar-contact encapsulated microball bearing using an integrated microturbine. J. Microelectromech. Syst. 18(2), 263–273 (2009)CrossRefGoogle Scholar
  15. 15.
    McCarthy, M., Waits, C.M., Beyaz, M.I., Ghodssi, R.: A rotary microactuator supported on encapsulated microball bearings using an electro-pneumatic thrust balance. J. Micromech. Microeng. 19(9), 094007 (2009)CrossRefGoogle Scholar
  16. 16.
    Hertz, H.: On the contact of rigid elastic solids. Gesammelte Weke 1, 155–195 (1895)Google Scholar
  17. 17.
    Kendall, K.: Rolling friction and adhesion between smooth solids. Wear 33(2), 351–358 (1975)CrossRefGoogle Scholar
  18. 18.
    Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1999)CrossRefGoogle Scholar
  19. 19.
    Asay, D.B., Kim, S.H.: Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124(17), 174712 (2006). doi: 10.1063/1.2192510 CrossRefGoogle Scholar
  20. 20.
    Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24(1), 155–159 (2007). doi: 10.1021/la702598g CrossRefGoogle Scholar
  21. 21.
    Asay, D., Dugger, M., Kim, S.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29(1), 67–74 (2008). doi: 10.1007/s11249-007-9283-0 CrossRefGoogle Scholar
  22. 22.
    Jones, R., Pollock, H.M., Cleaver, J., Hodges, C.: Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 18, 8045–8055 (2002)CrossRefGoogle Scholar
  23. 23.
    T. A. Stolarski, S.T.: Rolling contacts. Tribology in practice series. Professional engineering publications, (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brendan M. Hanrahan
    • 1
    • 2
  • Saswat Misra
    • 3
  • Mustafa I. Beyaz
    • 4
  • Jeremy H. Feldman
    • 3
  • Christopher M. Waits
    • 1
  • Reza Ghodssi
    • 3
  1. 1.U.S. Army Research LaboratoryAdelphiUSA
  2. 2.Oak Ridge Associated Universities Fellowship ProgramOak RidgeUSA
  3. 3.Electrical and Computer Engineering Department, Institute for Systems ResearchUniversity of Maryland, College ParkCollege ParkUSA
  4. 4.Department of Electrical and Electronics EngineeringAntalya International UniversityAntalyaTurkey

Personalised recommendations