Skip to main content
Log in

History, Origins and Prediction of Elastohydrodynamic Friction

  • Review Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

There is currently considerable debate concerning the most appropriate rheological model to describe the behaviour of lubricant films in rolling–sliding, elastohydrodynamic contacts. This is an important issue since an accurate model is required to predict friction in such contacts. This paper reviews the origins of this debate, which primarily concerns a divergence of views between researchers using high pressure, high shear rate viscometry and those concerned with the measurement and analysis of elastohydrodynamic friction; the former advocate a Carreau-based shear stress/strain rate model while the latter generally favour an Eyring-based one. The crucial importance of accounting for shear heating effects in analysing both viscometric and friction data is discussed. The main criticisms levied by advocates of a Carreau-based model against Eyring’s model are discussed in some detail. Finally, the ability of both types of rheological model to fit elastohydrodynamic friction measurements for a quite simple, well-defined base fluid is tested, using previously measured pressure–viscosity behaviour for the fluid. Both models appear to fit the experimental data over a wide temperature range quite well, though fit of the Eyring model appears slightly closer than that of the Carreau–Yasuda model. Friction data from a wider range of well-defined fluid types are needed to identify categorically the most appropriate model to describe elastohydrodynamic friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gohar, R.: Elastohydrodynamics, 2nd edn. Imperial College Press, London (2002)

    Google Scholar 

  2. Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18, 265–291 (2006)

    Google Scholar 

  3. Bair, S., Liu, Y., Wang, Q.J.: The pressure-viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response. Trans. ASME J. Tribol. 128, 624–631 (2006)

    Google Scholar 

  4. Foord, C.A., Hamman, W.C., Cameron, A.: Evaluation of lubricants using optical elastohydrodynamics. ASLE Trans. 11, 31–43 (1968)

    Google Scholar 

  5. Van Leeuwen, H.: The determination of the pressure—viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements. Proc. Inst. Mech. Eng. J. 223, 1143–1163 (2009)

    Google Scholar 

  6. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication. The Elastohydrodynamics of Elliptical Contacts. Wiley, New York (1981)

    Google Scholar 

  7. Habchi, W., Bair, S., Qureshi, F., Covitch, M.: A film thickness correction formula for double-Newtonian shear-thinning in rolling EHL circular contacts. Tribol. Lett. 50, 59–66 (2013)

    Google Scholar 

  8. Bair, S.: Shear thinning correction for rolling/sliding elastohydrodynamic film thickness. Proc. Inst. Mech. Eng. J219, 69–74 (2005)

    Google Scholar 

  9. Grubin, A.N.: Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. In: Ketova, Kh.F. (ed) Proceedings of Symposium, Investigation of the Contact of Machine Components. Central Scientific Research Institute for Technology and Mechanical Engineering, Book No. 30, pp. 115–166, Moscow, 1949, D.S.I.R Trans. No. 337

  10. Lewicki, W.: Some physical aspects of lubrication in rolling bearings and gears. Engineer 200, 176–178 (1955)

    Google Scholar 

  11. Crook, A.W.: The lubrication of rollers. Phil. Trans. R. Soc. Lond. A250, 387–409 (1958)

    Google Scholar 

  12. MacConochie, I.O., Cameron, A.: The measurement of oil film thickness in gear teeth. Trans. ASME J. Basic Eng. 82, 29–34 (1960)

    Google Scholar 

  13. Crook, A.W.: The lubrication of rollers, III—a theoretical discussion of friction and temperatures in the oil film. Phil. Trans. R. Soc. A254, 237–258 (1961)

    Google Scholar 

  14. Smith, F.W.: The effect of temperature in concentrated contact lubrication. ASLE Trans. 5, 142–148 (1962)

    Google Scholar 

  15. Crook, A.W.: The lubrication of rollers, IV—measurements of friction and effective viscosity. Phil. Trans. R. Soc. A255, 281–312 (1963)

    Google Scholar 

  16. Harrison, G., Trachman, E.G.: The role of compressional viscoelasticity in the lubrication of rolling contacts. Trans. ASME J. Lubr. Technol. 94, 306–312 (1972)

    Google Scholar 

  17. Bell, J.C., Kannel, J.W., Allen, C.M.: The rheological behaviour of the lubricant in the contact zone of a rolling contact system. Trans. ASME J. Basic Eng. 86, 423–434 (1964)

    Google Scholar 

  18. Jefferis, J.A., Johnson, K.L.: First paper: sliding friction between lubricated rollers. Proc. Inst. Mech. Eng. 182, 281–291 (1967)

    Google Scholar 

  19. Johnson, K.L., Cameron, R.: Fourth paper: shear behaviour of elastohydrodynamic oil films at high rolling contact pressures. Proc. Inst. Mech. Eng. 182, 307–330 (1967)

    Google Scholar 

  20. Johnson, K.L., Roberts, A.D.: Observations of viscoelastic behaviour of an elastohydrodynamic lubricant film. Proc. R. Soc. Lond. A337, 217–242 (1974)

    Google Scholar 

  21. Tevaarwerk, J., Johnson, K.L.: A simple non-linear constitutive equation for elastohydrodynamic oil films. Wear 35, 345–356 (1975)

    Google Scholar 

  22. Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamic films. Proc. R. Soc. Lond. A356, 215–238 (1977)

    Google Scholar 

  23. Johnson, K.L.: Introductory review of lubricant rheology and traction. In: Proceedings of 5th Leeds-Lyon Symposium on Tribology, Elastohydrodynamic Lubrication and Related Topics, pp. 155–161. MEP, London (1978)

  24. Johnson, K.L., Nayak, L., Moore, A.: Determination of elastic shear modulus of lubricants from disc machine traction tests. In: Proceedings of 5th Leeds-Lyon Symposium on Tribology, Elastohydrodynamic Lubrication and Related Topics, pp. 204–208. MEP, London (1978)

  25. Conroy, T.F., Johnson, K.L., Owen, S.: Viscosity in the thermal region of EHD traction. In: Proc 6th Leeds-Lyon Symposium on Tribology, Thermal Effects in Tribology, pp. 219–227. MEP, London (1980)

  26. Adams, D.R., Hirst, W.: Frictional traction in elastohydrodynamic lubrication. Proc. R. Soc. A332, 505–525 (1973)

    Google Scholar 

  27. Hirst, W., Moore, A.J.: Non-Newtonian behaviour in elastohydrodynamic lubrication. Proc. R. Soc. A337, 101–121 (1974)

    Google Scholar 

  28. Hirst, W., Moore, A.J.: The elastohydrodynamic behaviour of polyphenyl ether. Proc. R. Soc. A344, 403–426 (1975)

    Google Scholar 

  29. Hirst, W., Moore, A.J.: Elastohydrodynamic lubrication at high pressures. Proc. R. Soc. A360, p403–p425 (1978)

    Google Scholar 

  30. Hirst, W., Moore, A.J.: Elastohydrodynamic lubrication at high pressures. II - Non-Newtonian behaviour. Proc. R. Soc. A365, 537–565 (1979)

    Google Scholar 

  31. Hirst, W., Moore, A.J.: The effect of temperature on traction in elastohydrodynamic lubrication. Phil. Trans. R. Soc. Lond. A298, 183–208 (1980)

    Google Scholar 

  32. Plint, M.A.: Traction in elastohydrodynamic contacts. Proc. Inst. Mech. Eng. 182, 300–306 (1967)

    Google Scholar 

  33. Allen, C.W., Townsend, D.P., Zaretsky, E.V.: Elastohydrodynamic lubrication of a spinning ball in a nonconforming groove. Trans. ASME J. Lubr. Technol. 92, 89–96 (1970)

    Google Scholar 

  34. Archard, J.F.: The temperature of rubbing surfaces. Wear 2, 438–455 (1959)

    Google Scholar 

  35. Hirst, W., Richmond, J.W.: Traction in elastohydrodynamic contacts. Proc. Inst. Mech. Eng. C202, 129–144 (1988)

    Google Scholar 

  36. Evans, C.R., Johnson, K.L.: The rheological properties of elastohydrodynamic lubricants. Proc. Inst. Mech. Eng. C200, 303–312 (1986)

    Google Scholar 

  37. Evans, C.R., Johnson, K.L.: Regimes of traction in elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. C200, 313–324 (1986)

    Google Scholar 

  38. LaFountain, A.R., Johnston, G.J., Spikes, H.A.: The elastohydrodynamic traction of synthetic base oil blends. Tribol. Trans. 44, 648–656 (2001)

    Google Scholar 

  39. Moore, A.J.: The derivation of basic liquid flow properties from disc machine traction tests. In: Proceedings of 7th Leeds-Lyon Symposium on Tribology, Friction and Traction, pp. 289–295. MEP, London (1981)

  40. Muraki, M., Dong, D.: Derivation of basic rheological parameters from experimental elastohydrodynamic lubrication traction curves of low-viscosity lubricants. Proc. Inst. Mech. Eng. 213, 53–61 (1999)

    Google Scholar 

  41. Fang, N., Chang, L., Webster, M.N., Jackson, A.: A non-averaging method of determining the rheological properties of traction fluids. Tribol. Intern 33, 751–760 (2000)

    Google Scholar 

  42. Fang, N., Chang, L., Johnson, G.J., Webster, M.N., Jackson, A.: An experimental/theoretical approach to modelling the viscous behaviour of liquid lubricants in elastohydrodynamic lubrication contacts. Proc. Inst. Mech. Eng. J215, 311–318 (2001)

    Google Scholar 

  43. Bair, S., Winer, W.O.: The high shear stress rheology of liquid lubricants at pressures of 2 to 200 MPa. Trans. ASME J. Tribol. 112, 253–256 (1990)

    Google Scholar 

  44. Bair, S.: The nature of the logarithmic traction gradient. Tribol. Intern. 35, 591–597 (2002)

    Google Scholar 

  45. Bair, S.: Rheology and high-pressure models for quantitative elastohydrodynamics. Proc. Inst. Mech. Eng. J223, 617–628 (2009)

    Google Scholar 

  46. Houpert, L., Flamand, L., Berthe, D.: Rheological and thermal effects in lubricated EHD contacts. Trans. ASME J. Tribol 103, 526–532 (1981)

    Google Scholar 

  47. Wang, S.H., Zhang, H.H.: Combined effects of thermal and non-Newtonian character of lubricant on pressure, film profile, temperature rise, and shear stress in EHL. Trans. ASME J. Tribol. 109, 666–670 (1987)

    Google Scholar 

  48. Sui, P.C., Sadeghi, F.: Non-Newtonian thermal elastohydrodynamic lubrication. Trans. ASME J. Tribol. 113, 390–396 (1991)

    Google Scholar 

  49. Wang, S., Cusano, C., Conry, T.F.: Thermal analysis of elastohydrodynamic lubrication of line contacts using the Ree–Eyring fluid model. Trans. ASME J. Tribol. 113, 232–242 (1991)

    Google Scholar 

  50. Khonsari, M.M., Hua, D.Y.: Thermal elastohydrodynamic analysis using a generalized non-Newtonian formulation with application to Bair–Winer constitutive equation. Trans. ASME J. Tribol. 116, 37–46 (1994)

    Google Scholar 

  51. Sharif, K.J., Evans, H.P., Snidle, R.W., Newall, J.P.: Modeling of film thickness and traction in a variable ratio traction drive rig. Trans. ASME J. Tribol. 126, 92–104 (2004)

    Google Scholar 

  52. Otero, J.E., Morgado, P.L., Tanarro, E.C., de la Guerra Ochoa, E., Lantada, A.D., Munoz-Guijosa, J.M., Sanz, J.M.: Analytical model for predicting the friction coefficient in point contacts with thermal elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. J. 225, 181–191 (2011)

    Google Scholar 

  53. Novak, J.D., Winer, W.O.: Some measurements of high pressure lubricant rheology. Trans. ASME J. Lubr. Technol. 90, 580–590 (1968)

    Google Scholar 

  54. Jakobsen, J., Winer, W.O.: High shear stress behaviour of some representative lubricants. Trans. ASME J. Lubr. Technol. 97, 479–485 (1975)

    Google Scholar 

  55. Bair, S., Winer, W.O.: Shear strength measurement of lubricants at high pressure. Trans. ASME J. Lubr.Technol. 101, 251–257 (1979)

    Google Scholar 

  56. Bair, S., Winer, W.O.: A rheological model for elastohydrodynamic contacts based on primary laboratory date. Trans. ASME J. Lubr. Technol. 101, 258–264 (1979)

    Google Scholar 

  57. Bair, S., Winer, W.O.: Some observations in high pressure rheology of lubricants. Trans. ASME J. Lubr. Technol. 104, 357–364 (1982)

    Google Scholar 

  58. Ramesh, K.T., Clifton, R.J.: A pressure-shear plate impact experiment for studying the rheology of lubricants at high pressures and high shearing rates. Trans. ASME J. Tribol. 109, 215–222 (1987)

    Google Scholar 

  59. Bair, S., Winer, W.O.: The high pressure high shear stress rheology of liquid lubricants. Trans. ASME J. Tribol. 112, 1–9 (1992)

    Google Scholar 

  60. Bair, S., Winer, W.O.: A new high pressure, high shear stress viscometer and results for lubricants. Tribol. Trans. 36, 721–725 (1993)

    Google Scholar 

  61. Bair, S.: Recent developments in high pressure rheology of lubricants. Proceedings of 21st Leeds-Lyon Symposium on Tribology, Lubricants and Lubrication, pp. 169–187. Elsevier Science B.V, Amsterdam (1995)

    Google Scholar 

  62. Bair, S.: The high pressure rheology of some simple model hydrocarbons. Proc. Inst. Mech. Eng. J. 216, 139–149 (2002)

    Google Scholar 

  63. Bair, S., Khonsari, M.M.: Reynolds equations for common generalized Newtonian models and an approximate Reynolds-Carreau equation. Proc. Inst. Mech. Eng. J. 220, 365–374 (2006)

    Google Scholar 

  64. Bair, S., Vergne, P., Querry, M.: A unified shear-thinning treatment of both film thickness and traction in EHD. Tribol. Lett. 18, 145–152 (2005)

    Google Scholar 

  65. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Google Scholar 

  66. Ewell, R.H.: The reaction rate theory of viscosity and some of its applications. J. Appl. Phys. 9, 252–269 (1938)

    Google Scholar 

  67. Kincaid, J.F., Eyring, H., Stearn, A.E.: The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem. Rev. 28, 301–365 (1941)

    Google Scholar 

  68. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)

    Google Scholar 

  69. Powell, R.E., Roseveare, W.E., Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33, 430–435 (1941)

    Google Scholar 

  70. Ree, T., Eyring, H.: Theory of non‐Newtonian flow. I. Solid plastic system. J. Appl. Phys. 26, 793–800 (1955)

    Google Scholar 

  71. Ree, F., Ree, T., Eyring, H.: Relaxation theory of transport problems in condensed systems. Ind. Eng. Chem. 50, 1036–1040 (1958)

    Google Scholar 

  72. Bell, J.C.: Lubrication of rolling surfaces by a Ree–Eyring fluid. ASLE Trans. 5, 160–171 (1962)

    Google Scholar 

  73. Bair, S.: Actual Eyring models for thixotropy and shear-thinning: experimental validation and application to EHD. Trans ASME J. Tribol. 126, 728–732 (2004)

    Google Scholar 

  74. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. für Angew. Math. und Mech. 8, 85–106 (1928)

    Google Scholar 

  75. Popov, V.L., Gray, J.A.T.: Prandtl‐Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. ZAMM‐J. Appl. Math. Mech. 92, 683–708 (2012)

    Google Scholar 

  76. Sutterby, J.L.: Laminar converging flow of dilute polymer solutions in conical sections: part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 12, 63–68 (1966)

    Google Scholar 

  77. Cross, M.M.: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Coll. Sci. 20, 417–443 (1965)

    Google Scholar 

  78. Morris, E.R.: Shear-thinning of ‘random coil’ polysaccharides: characterisation by two parameters from a simple linear plot. Carbohydr. Polym. 13, 85–96 (1990)

    Google Scholar 

  79. Powell, R.E., Eyring, H.: Mechanism for relaxation theory of viscosity. Nature 154, 427–428 (1944)

    Google Scholar 

  80. Lodge, A.S.: Constitutive equations from molecular network theories for polymer solutions. Rheol. Acta 7, 379–392 (1968)

    Google Scholar 

  81. Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16, 99–127 (1972)

    Google Scholar 

  82. Yasuda, K.Y., Armstrong, R.C., Cohen, R.E.: Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20, 163–178 (1981)

    Google Scholar 

  83. Bair, S.: Measurement of real non-Newtonian response for liquid lubricants under moderate pressures. Proc. Inst. Mech. Eng. J215, 223–233 (2001)

    Google Scholar 

  84. Warburg, E., Sachs, J.: Ueber den Einfluss der Dichtigkeit auf die Viscosität tropfbarer Flüssigkeiten. Ann. der Physik 258, 518–522 (1884)

    Google Scholar 

  85. Barus, C.: Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 266, 87–96 (1893)

    Google Scholar 

  86. Pressure-viscosity Report, A.S.M.E.: Viscosity and density of over 40 lubricating fluids of known composition at pressures to 150, 000 psi and temperatures to 425F. ASME, New York (1953)

    Google Scholar 

  87. Roelands, C.J.A.: Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils. PhD thesis, Techn. Univ. of Delft (1966)

  88. Paluch, M., Dendzik, Z., Rzoska, S.J.: Scaling of high-pressure viscosity data in low-molecular-weight glass-forming liquids. Phys. Rev. B 60, 2979–2982 (1999)

    Google Scholar 

  89. Doolittle, A.K.: Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free‐space. J. Appl. Phys. 22, 1471–1475 (1951)

    Google Scholar 

  90. Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959)

    Google Scholar 

  91. Yasutomi, S., Bair, S., Winer, W.O.: An application of a free volume model to lubricant rheology I—dependence of viscosity on temperature and pressure. Trans. ASME J. Tribol. 106, 291–302 (1984)

    Google Scholar 

  92. Bair, S., Kottke, P.: Pressure-viscosity relationships for elastohydrodynamics. Tribol. Trans. 46, 289–295 (2003)

    Google Scholar 

  93. Larsson, R., Anderson, O.: Lubricant thermal conductivity and heat capacity under high pressure. Proc. Inst. Mech. Eng. J. 214, 337–342 (2000)

    Google Scholar 

  94. Bair, S., Khonsari, M., Winer, W.O.: High-pressure rheology of lubricants and limitations of the Reynolds equation. Tribol. Intern. 31, 573–586 (1998)

    Google Scholar 

  95. Bair, S.: Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization. Tribol. Lett. 22, 197–206 (2006)

    Google Scholar 

  96. Harris, K.R.: Temperature and pressure dependence of the viscosities of 2-ethylhexyl benzoate, bis (2-ethylhexyl) phthalate, 2, 6, 10, 15, 19, 23-hexamethyltetracosane (squalane), and diisodecyl phthalate. J. Chem. Eng. Data 54, 2729–2738 (2009)

    Google Scholar 

  97. Harris, K.R., Bair, S.: Temperature and pressure dependence of the viscosity of diisodecyl phthalate at temperatures between (0 and 100) C and at pressures to 1 GPa. J. Chem. Eng. Data 52, 272–278 (2007)

    Google Scholar 

  98. Bair, S.: The high-pressure, high-shear stress rheology of a polybutene. J. Non-Newt. Fluid Mech. 97, 53–65 (2001)

    Google Scholar 

  99. Clifton, R.J.: Discussion to paper Bair, S., Winer, W.O.: The high shear stress rheology of liquid lubricants at pressures of 2 to 200 MPa. Trans. ASME J. Tribol. 112, 253–256 (1990)

    Google Scholar 

  100. Bair, S., Winer. W.O.: The pressure-viscosity coefficient at Hertz pressure and its relation to concentrated contact traction. Proceedings of 26th Leeds-Lyon Symposium on Tribology, Thinning Films and Tribological Interfaces. Elsevier Science B.V., Tribology Series vol. 38, pp. 433–443. Elsevier Science B.V., Amsterdam (2001)

  101. Bair, S., Vergne, P., Marchetti, M.: The effect of shear-thinning on film thickness for space lubricants. Tribol. Trans. 45, 330–333 (2002)

    Google Scholar 

  102. Bair, S., Qureshi, F.: The generalised Newtonian fluid model and elastohydrodynamic film thickness. Trans. ASME J. Tribol. 125, 70–75 (2003)

    Google Scholar 

  103. Eyring, H., Ree, T., Hirai, N.: The viscosity of high polymers—the random walk of a group of connected segments. Proc. Nat. Acad. Sci. USA 44, 1213–1217 (1958)

    Google Scholar 

  104. Muraki, M., Konishi, S.: Shear behavior of low-viscosity fluids in EHL contacts (Part 1): theoretical analysis with a thermal Eyring model. Jpn. J. Tribol. 38, 1085–1096 (1993)

    Google Scholar 

  105. Bair, S., Qureshi, F., Winer, W.O.: Observations of shear localization in liquid lubricants under pressure. Trans. ASME J. Tribol. 115, 507–514 (1993)

    Google Scholar 

  106. Ponjavic, A., Mare, L., Wong, J.S.: Effect of pressure on the flow behavior of polybutene. J. Polym. Sci., Part B: Polym. Phys. 52, 708–715 (2014)

    Google Scholar 

  107. Ponjavic, A., Wong, J.S.: The effect of boundary slip on elastohydrodynamic lubrication. RSC Adv. 4, 20821–20829 (2014)

    Google Scholar 

  108. Todd, B.D., Daivis, P.J.: Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simul. 33, 189–229 (2007)

    Google Scholar 

  109. Ashurst, W.T., Hoover, W.G.: Shear viscosity via periodic nonequilibrium molecular dynamics. Phys. Lett. 61A, 175–177 (1977)

    Google Scholar 

  110. Berker, A., Chynoweth, S., Klomp, U.C., Michopoulos, Y.: Non-equilibrium molecular dynamics (NEMD) simulations and the rheological properties of liquid n-hexadecane. J. Chem. Soc., Faraday Trans. 88, 1719–1725 (1992)

    Google Scholar 

  111. Kioupis, L.I., Maginn, E.J.: Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids. J. Phys. Chem. B 104, 7774–7783 (2000)

    Google Scholar 

  112. Lacks, D.J.: Energy landscapes and the non-Newtonian viscosity of liquids and glasses. Phys. Rev. Lett. 87, 225–502 (2001)

    Google Scholar 

  113. Rottler, J., Robbins, M.O.: Shear yielding of amorphous glassy solids: effect of temperature and strain rate. Phys. Rev. E 68.1, 011507 (2003)

    Google Scholar 

  114. Borzsak, I., Cummings, P.T., Evans, D.J.: Shear viscosity of a simple fluid over a wide range of strain rates. Mol. Phys. 100, 2735–2738 (2002)

    Google Scholar 

  115. Bair, S., McCabe, C., Cummings, P.T.: Calculation of viscous EHL traction for squalane using molecular simulation and rheometry. Tribol. Lett. 13, 251–254 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Spikes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spikes, H., Jie, Z. History, Origins and Prediction of Elastohydrodynamic Friction. Tribol Lett 56, 1–25 (2014). https://doi.org/10.1007/s11249-014-0396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0396-y

Keywords

Navigation