Skip to main content
Log in

Adsorbed Water Film and Heat Conduction from Disk to Slider in Heat-Assisted Magnetic Recording

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In heat-assisted magnetic recording (HAMR), a tiny area of magnetic recording media has to be heated up to a high temperature with laser to lower the coercivity temporarily for information to be written on the area. In a humid environment, some of the water vapor molecules adsorb on the disk surface to form a water film. In HAMR writing, the adsorbed water film on the disk surface will desorb instantly from the high-temperature laser heating area to become high-temperature high-pressure water vapor. The water vapor molecules will transfer extra heat from the high-temperature laser heating area on the disk surface to the slider, which makes the temperature of the slider surface higher in a humid environment than that in dry air. The heat transfer increases dramatically with relative humidity and with the decrease in slider–disk spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shukla, N., Svedberg, E., van de Veerdonk, R.J.M., Ma, X.D., Gui, J., Gellman, A.J.: Water adsorption on lubricated a-CHx in humid environments. Tribol. Lett. 15, 9–14 (2003)

    Article  Google Scholar 

  2. Shukla, N., Gellman, A.J., Ma, X.D., Gui, J.: Effect of humidity on lubricated carbon overcoats. Tribol. Lett. 12, 105–109 (2002)

    Article  Google Scholar 

  3. Karis, T.E., Tawakkul, M.A.: Water adsorption and friction on thin film magnetic recording disks. Tribol. Trans. 46, 469–478 (2003)

    Article  Google Scholar 

  4. Smallen, M., Lee, J.K., Chao, A., Enguero, J.: The role of disk carbon and slider in water adsorption. IEEE Trans. Magn. 30, 4137–4139 (1994)

    Article  Google Scholar 

  5. Karis, T.E.: Water adsorption on thin film media. J. Colloid Interface Sci. 225, 196–203 (2000)

    Article  Google Scholar 

  6. Li, Y.F., Trauner, D., Talke, F.E.: Effect of humidity on stiction and friction of the head/disk interface. IEEE Trans. Magn. 26, 2487–2489 (1990)

    Article  Google Scholar 

  7. Lei, R.Z., Gellman, A.J.: Humidity effects on PFPE lubricant bonding to a-CHx overcoats. Langmuir 16, 6628–6635 (2000)

    Article  Google Scholar 

  8. Tyndall, G.W., Waltman, R.J., Pacansky, J.: Effect of adsorbed water on perfluoropoyether-lubricated magnetic recording disks. J. Appl. Phys. 90, 6287–6296 (2001)

    Article  Google Scholar 

  9. Tian, H., Matsudaira, T.: The role of relative humidity, surface roughness and liquid build-up on static friction behavior of the head/disk interface. J. Tribol. 115, 28–35 (1993)

    Article  Google Scholar 

  10. Bhushan, B., Kotwal, C.A., Chilamakuri, S.K.: Kinetic meniscus model for prediction of rest stiction. J. Tribol. 120, 42–53 (1998)

    Article  Google Scholar 

  11. Kasaia, P.H., Raman, V.: Z-dol versus Z-tetraol: bonding and durability in magnetic hard disk application. Tribol. Lett. 16, 29–36 (2004)

    Article  Google Scholar 

  12. Kasaia, P.H., Raman, V.: Perfluoropolyethers with dialkylamine end groups: ultrastable lubricant for magnetic disk application. Tribol. Lett. 12, 117–122 (2002)

    Article  Google Scholar 

  13. Novotny, V., Staud, N.: Correlation between environmental and electrochemical corrosion of thin film magnetic recording media. J. Electrochem. Soc. 135, 2931–2938 (1988)

    Article  Google Scholar 

  14. Dubin, P.R., Winn, K.D., Davis, L.P., Cutler, R.A.: Degradation of co-based thin-film recording materials in selected corrosive environments. J. Appl. Phys. 53, 2579–2581 (1982)

    Article  Google Scholar 

  15. Ma, Y.S., Liu, B.: Lubricant transfer from disk to slider in hard disk drives. Appl. Phys. Lett. 90, 143516 (2007)

    Article  Google Scholar 

  16. Ma, Y.S., Liu, B.: Dominant factors in lubricant transfer and accumulation in slider–disk interface. Tribol. Lett. 29, 119–127 (2008)

    Article  Google Scholar 

  17. Kim, S.H., Dai, Q., Marchon, B., Flechsig, K.: Humidity effects on lubricant transfer in the head–disk interface of a hard disk drive. J. Appl. Phys. 105, 07B704 (2009)

    Google Scholar 

  18. Ma, Y.S., Liu, B.: Contribution of water vapor to slider air-bearing pressure in hard disk drives. Appl. Phys. Lett. 90, 223502 (2007)

    Article  Google Scholar 

  19. Strom, B.D., Zhang, S.Y., Lee, S.C., Khurshudov, A., Tyndall, G.W.: Effects of humid air on air-bearing flying height. IEEE Trans. Magn. 43, 3301–3304 (2007)

    Article  Google Scholar 

  20. Ma, Y.S., Liu, B.: Further study of the effect of water vapor on slider air bearing. IEEE Trans. Magn. 45, 5006–5009 (2009)

    Article  Google Scholar 

  21. Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., Erden, M.F.: Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008)

    Article  Google Scholar 

  22. Ma, Y.S., Man, Y.J., Shakerzadeh, M., Seet, H.L., Ji, R., Zheng, R.Y., Chung, H.J., Chen, X.Y., Hu, J.F., Yamamoto, T., Hempstead, R.: Laser-heating-induced damage to ultrathin carbon overcoat in heat-assisted magnetic recording. Tribol. Lett. 53, 303–310 (2014)

    Article  Google Scholar 

  23. Ma, Y.S., Chen, X.Y., Liu, B.: Experimental study of lubricant depletion in heat assisted magnetic recording: effects of laser heating duration and temperature. Microsyst. Technol. 19, 291–297 (2013)

    Article  Google Scholar 

  24. Ma, Y.S., Chen, X.Y., Liu, B.: Experimental study of lubricant depletion in heat assisted magnetic recording over the lifetime of the drive. Tribol. Lett. 47, 175–182 (2012)

    Article  Google Scholar 

  25. Wang, N., Komvopoulos, K.: Thermal stability of ultrathin amorphous carbon films for energy-assisted magnetic recording. IEEE Trans. Magn. 47, 2277–2282 (2011)

    Article  Google Scholar 

  26. Challener, W.A., Peng, C.B., Itagi, A.V., Karns, D., Peng, W., Peng, Y.G., Yang, X.M., Zhu, X.B., Gokemeijer, N.J., Hsia, Y.-T., Ju, G., Rottmayer, R.E., Seigler, M.A., Gage, E.C.: Heat-assisted magnetic recording by a nearfield transducer with efficient optical energy transfer. Nat. Photon. 3, 220–224 (2009)

    Article  Google Scholar 

  27. Buck, A.L.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981)

    Article  Google Scholar 

  28. Badmann, R., Stockhausen, N., Setzer, M.J.: The Statistical thickness and the chemical potential of adsorbed water films. J. Coll. Interf. Sci. 82, 534–542 (1981)

    Article  Google Scholar 

  29. Shiramatsu, T., Kurita, M., Miyake, K., Suk, M., Ohki, S., Tanaka, H., Saegusa, S.: Drive integration of active flying-height control slider with micro thermal actuator. IEEE Trans. Magn. 42, 2513–2515 (2006)

    Article  Google Scholar 

  30. Xiong, S.M., Bogy, D.B.: Flying height modulation for a dual thermal protrusion slider in heat assisted magnetic recording (HAMR). IEEE Trans. Magn. 49, 5222–5226 (2013)

    Article  Google Scholar 

  31. Liu, N., Zheng, J.L., Bogy, D.B.: Thermal flying-height control sliders in air–helium gas mixtures. IEEE Trans. Magn. 47, 100–104 (2011)

    Article  Google Scholar 

  32. Liu, N., Zheng, J.L., Bogy, D.B.: Predicting the flying performance of thermal flying-height control sliders in hard disk drives. J. Appl. Phys. 108, 016102 (2010)

    Article  Google Scholar 

  33. Chen, D., Liu, N., Bogy, D.B.: A phenomenological heat transfer model for the molecular gas lubrication system in hard disk drives. J. Appl. Phys. 105, 084303 (2009)

    Article  Google Scholar 

  34. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York (1994)

    Google Scholar 

  35. Poling, B.E., Prausnitz, J.M., O’Connell, J.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  36. Lide, D.R.: CRC Handbook of Chemistry and Physics, 89th edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  37. Lemmon, E.W., Jacobsen, R.T., Penoncello, S.G., Friend, D.G.: Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29, 331–385 (2000)

    Article  Google Scholar 

  38. Wagner, W., Kretzschmar, H.-J.: International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 2nd edn. Springer, Berlin (2008)

    Book  Google Scholar 

  39. Beirão, S.G.S., Ribeiro, A.P.C., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Thermal conductivity of humid air. Int. J. Thermophys. 33, 1686–1703 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y.S., Zhou, W.D., Yu, S.K. et al. Adsorbed Water Film and Heat Conduction from Disk to Slider in Heat-Assisted Magnetic Recording. Tribol Lett 56, 93–99 (2014). https://doi.org/10.1007/s11249-014-0388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0388-y

Keywords

Navigation