Skip to main content
Log in

Charge Distribution View: Large Difference in Friction Performance Between Graphene and Hydrogenated Graphene Systems

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Density functional theory calculations including dispersion correction (DFT-D2) were used to investigate the relationship between charge distribution and nanofriction characteristics of graphene-based material systems. In our calculations, the single-side-hydrogenated graphene (SSHGraphene) system exhibits lower coefficient of friction, whereas the graphane system exhibits larger one compared with graphene system. These results are attributed to the adjustments of interfacial charge distribution that are induced by different hydrogen passivations. The charge distribution is smooth along the sliding direction for the SSHGraphene sheet, which yields a small potential barrier. Corrugation of the charge distribution in graphane system is much steeper than that in graphene system, which leads to a larger potential barrier. Comparative investigations reveal that the interfacial charge distributions determine the nanofriction performance, which may be helpful for friction modulation and design of new controlling lubricant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carpick, R.W.: Controlling friction. Science 313, 184–185 (2006)

    Article  Google Scholar 

  2. Urbakh, M., Meyer, E.: The renaissance of friction. Nat. Mater. 9, 8–10 (2010)

    Article  Google Scholar 

  3. Hirano, M.: Atomistics of friction. Surf. Sci. Rep. 60, 159–201 (2006)

    Article  Google Scholar 

  4. Kim, H.-J., Kim, D.-E.: Nano-scale friction: a review. Int. J. Precis. Eng. Man. 10, 141–151 (2009)

    Google Scholar 

  5. Israelachvili, J.N.: Intermolecular and surface forces. Academic Press, London (1992)

    Google Scholar 

  6. Wang, J., Wang, F., Li, J., Sun, Q., Yuan, P., Jia, Y.: Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: a first-principles investigation. Surf. Sci. 608, 74–79 (2013)

    Article  Google Scholar 

  7. Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27, 6862–6867 (2011)

    Article  Google Scholar 

  8. Bai, S., Onodera, T., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Takaba, H., Kubo, M., Miyamoto, A.: Friction reduction mechanism of hydrogen- and fluorine-terminated diamond–like carbon films investigated by molecular dynamics and quantum chemical calculation. J. Phys. Chem. C 116, 12559–12565 (2012)

    Article  Google Scholar 

  9. Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)

    Article  Google Scholar 

  10. Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single–side–hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)

    Article  Google Scholar 

  11. Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Wang, H., Shao, T.-M.: Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 117, 12520–12525 (2013)

    Article  Google Scholar 

  12. Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Wang, H.: Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys. Rev. B 86, 125436 (2012)

    Article  Google Scholar 

  13. Cahangirov, S., Ciraci, S., Özçelik, O.: Superlubricity through graphene multilayers between Ni (111) surfaces. Phys. Rev. B 87, 205428 (2013)

    Article  Google Scholar 

  14. Velizhanin, K.A., Shahbazyan, T.V.: Long-range plasmon-assisted energy transfer over doped graphene. Phys. Rev. B 86, 245434 (2012)

    Article  Google Scholar 

  15. Bollmann, W., Spreadborough, J.: Action of graphite as a lubricant. Nature 186, 29–30 (1960)

    Article  Google Scholar 

  16. Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)

    Article  Google Scholar 

  17. Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  18. Kozlov, S.M., Viñes, F., Göling, A.: Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)

    Article  Google Scholar 

  19. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  Google Scholar 

  20. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    Article  Google Scholar 

  21. Subrahmanyam, K.S., Kumar, P., Maitra, U., Govindaraj, A., Hembram, K.P.S.S., Waghmare, U.V., Rao, C.N.R.: Chemical storage of hydrogen in few-layer graphene. Proc. Natl. Acad. Sci. USA 108, 2674–2677 (2011)

    Article  Google Scholar 

  22. Pujari, B.S., Gusarov, S., Brett, M., Kovalenko, A.: Single-side-hydrogenated graphene: density functional theory predictions. Phys. Rev. B. 84, 041402 (2011)

    Article  Google Scholar 

  23. Ko, J.-H., Kwon, S., Byun, I.-S., Choi, J.S., Park, B.H., Kim, Y.-H., Park, J.Y.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50, 137–144 (2013)

    Article  Google Scholar 

  24. Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)

    Article  Google Scholar 

  25. Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  26. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  27. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1998)

    Article  Google Scholar 

  28. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  29. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  30. Bučko, T., Hafner, J., Lebègue, S., Ángván, J.G.: Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010)

    Article  Google Scholar 

  31. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  32. Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

    Article  Google Scholar 

  33. Neitola, R., Pakkanen, T.A.: Ab initio studies on the atomic-scale origin of friction between hydrocarbon layers. Chem. Phys. 299, 47–56 (2004)

    Article  Google Scholar 

  34. Neitola, R., Pakkanen, T.A.: Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J. Phys. Chem. B 105, 1338–1343 (2001)

    Article  Google Scholar 

  35. Koskilinna, J.O., Linnolathi, M., Pakkanen, T.A.: Friction coefficient for hexagonal boron nitride surfaces from ab initio calculations. Tribol. Lett. 24, 37–41 (2006)

    Article  Google Scholar 

  36. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  37. Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109, 10348–10354 (2005)

    Article  Google Scholar 

  38. Fessler, G., Eren, B., Gysin, U., Glatzel, T., Meyer, E.: Friction force microscopy studies on SiO2 supported pristine and hydrogenated graphene. Appl. Phys. Lett. 104, 041910 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Key Basic Research Project of China (Grant No. 2012CB921300), National Natural Science Foundation of China (Grant No. 11274280), Natural Science Foundation of Henan Province (Grant No. 142300410250), and Foundation of Henan Educational Committee (Grant No. 14A140025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Wang or Yu Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, J., Fang, L. et al. Charge Distribution View: Large Difference in Friction Performance Between Graphene and Hydrogenated Graphene Systems. Tribol Lett 55, 405–412 (2014). https://doi.org/10.1007/s11249-014-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0370-8

Keywords

Navigation