Skip to main content
Log in

Temperature Dependences in the Tomlinson/Prandtl Model for Atomic Sliding Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The temperature dependence of the Tomlinson/Prandtl model for nanoscale sliding friction is analyzed by considering the properties of the initial and final states between which the tip can move, as well as the energy barrier between them, for various sliding regimes defined by the value of the corrugation factor γ. When γ < 1, the friction force tends to zero, defining a so-called superlubricious regime. The most commonly observed behavior is found for γ > 4.603, where the friction force increases monotonically with increasing sliding velocity up to a critical value equal to the value of F * (lateral force at T = 0) and monotonically decreases with temperature from F * at T = 0. However, completely different behavior is found when 1 < γ < 4.603. The temperature dependence of the lateral force in this regime is investigated using Monte Carlo simulations. The friction force still tends to F * as T approaches 0 K, but in contrast to the behavior found when γ > 4.603, the friction force increases with increasing temperature from F *, reaches a maximum value, and then decreases monotonically as the temperature rises further. Such behavior has been observed in atomic force microscopy friction measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905–937 (1929)

    Google Scholar 

  2. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  3. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13, R619–R642 (2001)

    Article  Google Scholar 

  4. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)

    Article  Google Scholar 

  5. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44, 367–386 (2011)

    Article  Google Scholar 

  6. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.H.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  Google Scholar 

  7. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  Google Scholar 

  8. Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  Google Scholar 

  9. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick–slip friction. Phys. Rev. Lett. 104, 256101 (2010)

    Article  Google Scholar 

  10. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick–slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011)

    Article  Google Scholar 

  11. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)

    Article  Google Scholar 

  12. Greiner, C., Felts, J.R., Dai, Z., King, W.P., Carpick, R.W.: Controlling nanoscale friction through the competition between capillary adsorption and thermally-activated sliding. ACS Nano 6, 4305–4313 (2012)

    Article  Google Scholar 

  13. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Unexpected temperature and velocity dependencies of atomic-scale stick–slip friction. Phys. Rev. B 84, 115417 (2011)

    Article  Google Scholar 

  14. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  Google Scholar 

  15. Dong, Y., Gao, H., Martini, A.: Suppression of atomic friction under cryogenic conditions: the role of athermal instability in AFM measurements. EPL 98, 16002 (2012)

    Article  Google Scholar 

  16. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick–slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  Google Scholar 

  17. Medyanik, S.N., Liu, W.K., Sung, I., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

    Article  Google Scholar 

  18. Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 86, 035443 (2012)

    Article  Google Scholar 

  19. Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 84, 125419 (2011)

    Article  Google Scholar 

  20. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80, 153408 (2009)

    Article  Google Scholar 

  21. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177–180 (2010)

    Google Scholar 

  22. Sales, J.L., Uñac, R.O., Gargiulo, M.V., Bustos, V., Zgrablich, G.: Monte Carlo simulation of temperature programmed desorption spectra: a guide through the forest for monomolecular adsorption on a square lattice. Langmuir 12, 95–100 (1996)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Science Foundation under Grant Number CMMI 0826151, the CONICET (Argentina) for support of this work, and Prof. Victor Pereyra for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio J. Furlong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzi, S.J., Tysoe, W.T. & Furlong, O.J. Temperature Dependences in the Tomlinson/Prandtl Model for Atomic Sliding Friction. Tribol Lett 55, 363–369 (2014). https://doi.org/10.1007/s11249-014-0360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0360-x

Keywords

Navigation