Skip to main content
Log in

On the Friction of Carbon Black- and Silica-Reinforced BR and S-SBR Elastomers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction of carbon black- and silica-reinforced elastomers is studied experimentally and theoretically, using Persson’s model. The effect of reinforcement fillers on elasticity was determined by dynamical mechanical analysis. Carbon black-filled samples have a higher Young’s modulus than the silica-filled compounds. Silica-filled rubbers have a higher tan (δ) at lower temperatures and a lower loss tangent at higher temperatures, which is a rough indication for higher wet grip and lower rolling resistance, respectively. Friction tests on a ball-on-disk test rig were performed to study the effect of the reinforcement fillers and their amount on the friction between rubber samples (disks) and relatively smooth or rough granite surfaces (balls). The results were discussed and compared with the friction model presented by Persson. It was shown theoretically and experimentally that hysteresis does not play a significant role in the friction of rubber samples in contact with smooth granite and that it plays a minor role in contact with a rough granite sphere. Therefore, the hysteresis contribution of friction can be neglected in the contact of rubbers with just smooth spheres. Moreover, a higher friction coefficient is seen in samples with a higher content of fillers. Silica-filled compounds show a slightly higher coefficient of friction compared with the carbon black-filled compounds. The effect of attached wear debris to the granite surfaces on the friction level has been studied. The results are supported by SEM and confocal microscopic images of the wear debris itself and wear debris attached to the granite spheres, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

F f :

Total friction force (N)

F vis :

Hysteresis contribution of friction force induced by viscoelastic losses (N)

τ f(v):

Frictional shear stress as a function of velocity (Pa)

A(v):

Real area of contact as a function of velocity (m2)

μ f :

Total coefficient of friction

F N :

Nominal normal load (N)

σ 0 :

Nominal contact pressure (Pa)

A 0 :

Nominal area of contact (m2)

μ vis :

Viscoelastic or hysteresis coefficient of friction

P(q):

Real to the nominal area of contact ratio as a function of wave vector

ω :

Frequency of the applied load to the rubber (rad/s)

λ :

Length scale of the roughness under study (m)

\(\vec{\varvec{q}}\) :

Roughness wave vector (1/m)

q:

Amplitude of the roughness wave vector (1/m)

q 0 :

Lower wave vector cutoff corresponding to the longest wave length of roughness (1/m)

q 1 :

Higher wave vector cutoff corresponding to the shortest wave length of roughness (1/m)

C(q):

Power spectral density of the roughness (m4)

A(q):

Apparent contact area when the surface is smooth on all wave vectors >q (m2)

ϕ :

Angle between the velocity vector and the wave vector \(\vec{\varvec{q}}\) (rad)

E :

Modulus of elasticity (Pa)

G(ω):

The shear modulus (Pa)

ν :

Poisson’s ratio

τ c :

Effective frictional stresses with regard to energy dissipation at a crack opening (Pa)

τ s :

Effective frictional stresses with regard to shearing a thin confined film (Pa)

G(v):

Energy/area to break the interfacial rubber–substrate bond as a function of velocity (w/m2)

a :

Crack-tip radius (m)

a T :

The temperature–frequency viscoelastic horizontal shift factor

T g :

Glass transition temperature (°C)

ξ :

Magnification factor

References

  1. Le Gal, A., Yang, X., Klüppel, M.: Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. J. Chem. Phys. 123(1), 014704 (2005)

    Article  Google Scholar 

  2. Claeys, X., Jingang, Y., Alvarez, L., Horowitz, R., Canudas de Wit, C., Richard, L.: Tire friction modeling under wet road conditions. In: American Control Conference, vol. 1793, pp. 1794–1799 (2001)

  3. Lorenz, B., Persson, B.N.J., Fortunato, G., Giustiniano, M., Baldoni, F.: Rubber friction for tire tread compound on road surfaces. J. Phys. Condens. Matter 25(9), 095007 (2013)

    Article  Google Scholar 

  4. O’Boy, D.J., Dowling, A.P.: Tyre/road interaction noise-numerical noise prediction of a patterned tyre on a rough road surface. J. Sound Vib. 323(1–2), 270–291 (2009)

    Article  Google Scholar 

  5. Brancati, R., Strano, S., Timpone, F.: An analytical model of dissipated viscous and hysteretic energy due to interaction forces in a pneumatic tire: theory and experiments. Mech. Syst. Signal Process. 25(7), 2785–2795 (2011)

    Article  Google Scholar 

  6. Rustighi, E., Elliott, S.J., Finnveden, S., Gulyás, K., Mócsai, T., Danti, M.: Linear stochastic evaluation of tyre vibration due to tyre/road excitation. J. Sound Vib. 310(4–5), 1112–1127 (2008)

    Article  Google Scholar 

  7. Susumu, A., Yukio, T., Toshio, M., Akira, A., Kohki, T., Toshio, K., Mamoru, M., Toshiro, Y.: Investigation of environmental problems caused by studded tires of automobiles using PIXE. Nucl. Inst. Methods Phys. Res. B 3(1–3), 516–521 (1984)

    Article  Google Scholar 

  8. Bond, R., Morton, G.F., Krol, L.H.: A tailor-made polymer for tyre applications. Polymer 25(1), 132–140 (1984)

    Article  Google Scholar 

  9. Grosch, K.A.: The rolling resistance, wear and traction properties of tread compounds. Rubber Chem. Technol. 69(3), 495–568 (1996)

    Article  Google Scholar 

  10. Williams, A.R.: Tyre to road interaction: a case for application of research. Tribol. Int. 17(5), 235–241 (1984)

    Article  Google Scholar 

  11. Golden, J.M.: A molecular theory of adhesive rubber friction. J. Phys. A Math. Gen. 8(6), 966–979 (1975)

    Article  Google Scholar 

  12. Rand, C.J., Crosby, A.J.: Insight into the periodicity of Schallamach waves in soft material friction. Appl. Phys. Lett. 89(26), 261907 (2006)

    Article  Google Scholar 

  13. Tabor, D.: The mechanism of rolling friction. II. The elastic range. Proc. R. Soc. Sci. Lond. Ser. A Math. Phys. Sci. 229(1), 198–220 (1955). doi:10.2307/99713

    Article  Google Scholar 

  14. Moore, D.F.: The Friction and Lubrication of Elastomers. Pergamon Press Oxford, New York (1972)

    Google Scholar 

  15. Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Comput. Methods Appl. Mech. Eng. 198(21–26), 1996–2008 (2009)

    Article  Google Scholar 

  16. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)

    Article  Google Scholar 

  17. Persson, B.N.J.: On the theory of rubber friction. Surf. Sci. 401(3), 445–454 (1998)

    Article  Google Scholar 

  18. Lorenz, B., Persson, B.N.J., Dieluweit, S., Tada, T.: Rubber friction: comparison of theory with experiment. Eur. Phys. J. E 34(12), 1–11 (2011)

    Article  Google Scholar 

  19. Pan, X.D.: Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions. Wear 262(5–6), 707–717 (2007)

    Article  Google Scholar 

  20. Patent Application (Michelin). US patent 5,227,425

  21. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17(1), R1–R62 (2005)

    Article  Google Scholar 

  22. Persson, B.N.J., Albohr, O., Heinrich, G., Ueba, H.: Crack propagation in rubber-like materials. J. Phys. Condens. Matter 17(44), R1071–R1142 (2005)

    Article  Google Scholar 

  23. Blau, P.J.: Embedding wear models into friction models. Tribol. Lett. 34(1 SPEC. ISS.), 75–79 (2009)

    Article  Google Scholar 

  24. Boissonnet, L., Duffau, B., Montmitonnet, P.: A wear particle-based model of friction in a polymer-metal high pressure contact. Wear 286–287, 55–65 (2012)

    Article  Google Scholar 

  25. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)

    Article  Google Scholar 

  26. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  27. Fritzsche, J., Klüppel, M.: Structural dynamics and interfacial properties of filler-reinforced elastomers. J. Phys. Conden. Matter 23(3), 035104 (2011)

    Article  Google Scholar 

  28. Klüppel, M.: Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics. J. Phys. Conden. Matter 21(3), 035104 (2009)

    Article  Google Scholar 

  29. Lorenz, B., Pyckhout-Hintzen, W., Persson, B.N.J.: Master curve of viscoelastic solid: using causality to determine the optimal shifting procedure, and to test the accuracy of measured data. Polymer 55(2), 565–571 (2014). doi:10.1016/j.polymer.2013.12.033

    Article  Google Scholar 

  30. Cochet, P., Barriquand, L., Bomal, Y., Touzet, S.: Precipitated Silica in Tire Tread. Paper presented at the ACS, Rubber Division, Cleveland, OH, Oct. 17–20 (1995)

  31. Persson, B.N.J.: Rubber friction: role of the flash temperature. J. Phys. Condens. Matter 18(32), 7789–7823 (2006)

    Article  Google Scholar 

  32. Rodriguez, N.V., Masen, M.A., Schipper, D.J.: Tribologically modified surfaces on elastomeric materials. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(5), 398–405 (2013)

    Article  Google Scholar 

  33. Momozono, S., Nakamura, K., Kyogoku, K.: Theoretical model for adhesive friction between elastomers and rough solid surfaces. J. Chem. Phys. 132(11), 114105 (2010)

    Article  Google Scholar 

  34. Bahadur, S.: The development of transfer layers and their role in polymer tribology. Wear 245(1–2), 92–99 (2000)

    Article  Google Scholar 

  35. Mergler, Y.J., Schaake, R.P., Huis in’t Veld, A.J.: Material transfer of POM in sliding contact. Wear 256(3–4), 294–301 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This project is carried out in the framework of the innovation program “GO Gebundelde Innovatiekracht,” and funded by the “European Regional Development Fund,” “Regio Twente” and “Provincie Overijssel.” The project partners Apollo Tyres Global R&D B.V., University of Twente (Tire–Road Consortium), Reef Infra, Stemmer Imaging B.V. and the Provincie Gelderland are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, M., Schipper, D.J. & Tolpekina, T.V. On the Friction of Carbon Black- and Silica-Reinforced BR and S-SBR Elastomers. Tribol Lett 54, 297–308 (2014). https://doi.org/10.1007/s11249-014-0334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0334-z

Keywords

Navigation