Skip to main content
Log in

Prediction of Crack Nucleation in Rough Line-Contact Fretting via Continuum Damage Mechanics Approach

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The crack nucleation behavior of rough surfaces in line contact is investigated by means of a thermodynamically based continuum damage mechanics technique. The deterministic approach is employed to investigate the effect of roughness on the surface tractions and contact stresses. In order to treat the effect of high stress gradients, a special averaging technique, proposed previously for the case of smooth surface, is adopted in this study. The predictions of the crack nucleation life are compared with the relevant experimental data in the literature and indicate the validity of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Hertzian line-contact half-width (μm)

D :

Damage parameter

D c :

Critical damage

dA :

Undamaged elemental area (m2)

\({\text{d}}\bar{A}_{i}\) :

Damaged elemental area (m2)

E :

Nominal (undamaged) elastic modulus (GPa)

E 1, E 2 :

Modulus of elasticity for the contacting bodies 1 and 2 (GPa)

E * :

Equivalent modulus of elasticity, \(E^{*} = \left( {\frac{{1 - v_{1}^{2} }}{{E_{1} }} + \frac{{1 - v_{2}^{2} }}{{E_{2} }}} \right)^{ - 1}\) (GPa)

E′:

Effective (damaged) elastic modulus (GPa)

F n :

Dimensionless normal force, \(F_{\text{n}} = \frac{W}{{lE^{*} R}}\)

F *n :

Corrective dimensionless normal force

F **n :

Corrective dimensionless normal force corresponding to the instantaneous stick zone

F t :

Maximum dimensionless tangential force, \(F_{t} = \frac{Q}{{lE^{*} R}}\)

h g :

Hardness of the softer contacting body (GPa)

\({\mathcal{H}}\) :

Dimensionless hardness, \({\raise0.7ex\hbox{${h_{g} }$} \!\mathord{\left/ {\vphantom {{h_{g} } {E^{*} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${E^{*} }$}}\)

H c :

Cyclic hardening modulus (MPa)

H(X):

Separation between two contacting surfaces

H 0 :

Approach of two contacting bodies

l :

Contact length (mm)

M :

Cyclic hardening exponent

N :

Number of cycles to crack nucleation

N s :

Specified number of cycles to crack nucleation

n j :

Normal vector in j direction

P(X):

Dimensionless normal pressure distribution, P(X) = p(x)/p H

\(P^{*} (X)\) :

Corrective dimensionless normal pressure distribution

\(P^{**} (X)\) :

Corrective dimensionless normal pressure distribution corresponding to the instantaneous stick zone

p(x):

Normal pressure distribution (GPa)

p H :

Maximum Hertzian pressure (GPa)

Q(X):

Dimensionless tangential traction distribution in monotonic loading (associated with F t), q(x)/p H

Q cl(X):

Dimensionless tangential traction distribution in cyclic loading

q(x):

Tangential traction distribution (GPa)

R :

Radius of the cylinder in contact with a flat or effective radius of curvature (mm)

R q :

Standard deviation of the asperity heights (μm)

\(\bar{R}_{q}\) :

Dimensionless standard deviation of the asperity heights, \(\bar{R}_{q} = \frac{{R_{q} }}{R}\)

\(\partial {\mathcal{R}}\) :

Boundary of the body

S e :

Material’s endurance limit (MPa)

S y :

Material’s yield stress (MPa)

T :

Dimensionless instantaneous tangential force

T i :

Traction over the boundary

W :

Normal force (N)

xz :

x- and z-coordinates (μm)

X :

Dimensionless x-coordinate, X = x/a

\(X_{1} ,X_{2}\) :

Dimensionless boundaries of the averaging zone

Z :

Dimensionless z-coordinate, Z = z/a

λ(X):

Surface profile (μm)

Λ(X):

Dimensionless surface profile, λ(X)/R

ɛ ij :

Strain tensor

\(\Delta \varepsilon_{li}\) :

Strain range of damage increment in cycle ith corresponding to zero stress in the hysteresis loop

\(\Delta \varepsilon_{oi}\) :

Threshold strain range of damage increment in cycle ith

\(\Delta \varepsilon_{mi}\) :

Maximum strain range of damage increment in the ith cycle

μ :

Friction coefficient

\(v_{1} ,v_{2}\) :

Poisson’s ratio for contacting bodies 1 and 2

σ :

Nominal normal stress (MPa)

σ 1 :

First principal stress (MPa)

\(\bar{\sigma }_{1}\) :

Dimensionless first principal stress, \(\bar{\sigma }_{1} = \frac{{\sigma_{1} }}{{p_{\text{H}} }}\)

σ f :

True failure stress (MPa)

σ max :

Maximum value of the cyclic stress (MPa)

σ′ :

Effective (damaged) normal stress (MPa)

ξ :

Scaling factor for the calculation of the corrective normal pressure terms

ψ :

Helmholtz free energy function

Ω c :

Contact domain

References

  1. Lindley, T.C., Nix, K.J.: The role of fretting in the initiation and early growth of fatigue cracks in trubo-generator materials. In: Miller, K.J., Brown, M.W. (eds.) Multiaxial Fatigue, vol. ASTM STP 853, pp. 340–360. American Society for Testing and Materials, Philadelphia, PA (1985)

  2. Szolwinski, M.P., Matlik, J.F., Farris, T.N.: Effects of HCF loading on fretting fatigue crack nucleation. Int. J. Fatigue 21(7), 671–677 (1999). doi:10.1016/S0142-1123(99)00028-6

    Article  Google Scholar 

  3. Ruiz, C., Nowell, D.: Desiging against fretting fatigue in aeroengines. In: Fuentes, M., Elices, M., Martin-Meizoso, A., Martinez-Esnaola, J.M. (eds.) European Structural Integrity Society, vol. 26, pp. 73–95. Elsevier (2000)

  4. Lykins, C.D., Mall, S., Jain, V.: An evaluation of parameters for predicting fretting fatigue crack initiation. Int. J. Fatigue 22(8), 703–716 (2000)

    Article  Google Scholar 

  5. Ciavarella, M., Demelio, G.: A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints. Int. J. Solids Struct. 38(10–13), 1791–1811 (2001). doi:10.1016/S0020-7683(00)00136-0

    Article  Google Scholar 

  6. Szolwinski, M.P., Harrish, G., McVeigh, P.A., Farris, T.N.: Experimental study of fretting crack nucleation in aerospace alloys with emphasis on life prediction. In: Hoeppner, D.W., Chandrasekaran, V., Elliot, C.B. (eds.) Fretting Fatigue: Current technology and Practices, ASTM STP 1367, pp. 267–281. American Society for Testing and Material, West Conshohocken, PA (2000)

    Chapter  Google Scholar 

  7. Ding, J., Sum, W.S., Sabesan, R., Leen, S.B., McColl, I.R., Williams, E.J.: Fretting fatigue predictions in a complex coupling. Int. J. Fatigue 29(7), 1229–1244 (2007). doi:10.1016/j.ijfatigue.2006.10.017

    Article  Google Scholar 

  8. Nowell, D., Dini, D.: Stress gradient effects in fretting fatigue. Tribol. Int. 36(2), 71–78 (2003). doi:10.1016/S0301-679x(02)00134-2

    Article  Google Scholar 

  9. Xi, N.S., Zhong, P.D., Huang, H.Q., Yan, H., Tao, C.H.: Failure investigation of blade and disk in first stage compressor. Eng. Fail. Anal. 7(6), 385–392 (2000). doi:10.1016/S1350-6307(99)00045-X

    Article  Google Scholar 

  10. Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963)

    Article  Google Scholar 

  11. Bhattacharya, B., Ellingwood, B.: Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20(9), 631–639 (1998)

    Article  Google Scholar 

  12. Hills, D.A., Nowell, D.: Mechanics of Fretting Fatigue. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  13. Szolwinski, M.P., Farris, T.N.: Mechanics of fretting fatigue crack formation. Wear 198(1–2), 93–107 (1996)

    Article  Google Scholar 

  14. Fellows, L.J., Nowell, D., Hills, D.A.: On the initiation of fretting fatigue cracks. Wear 205(1–2), 120–129 (1997)

    Article  Google Scholar 

  15. Szolwinski, M.P., Farris, T.N.: Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear 221(1), 24–36 (1998)

    Article  Google Scholar 

  16. Lykins, C.D.: An Investigation of Fretting Fatigue Crack Initiation Behavior of Titanium Alloy Ti-6Al-4 V. University of Dayton, Dayton, OH (1999)

    Google Scholar 

  17. Proudhon, H., Fouvry, S., Buffiere, J.Y.: A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume. Int. J. Fatigue 27(5), 569–579 (2005). doi:10.1016/j.ijfatigue.2004.09.001

    Article  Google Scholar 

  18. Bahrami, M., Yovanovich, M.M., Culham, R.J.: Role of random roughness on thermal performance of microfins. J. Thermophys. Heat Transf. 21(1), 153–157 (2007)

    Article  Google Scholar 

  19. Bhushan, B., Jung, Y.C.: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J. Phys.: Condens. Matter 20(22), 225010 (2008)

    Google Scholar 

  20. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  21. Peyvandi, A., Abideen, S.U., Huang, Y., Lee, I., Soroushian, P., Lu, J.: Surface treatment of polymer microfibrillar structures for improved surface wettability and adhesion. Appl. Surf. Sci. 289, 586–591 (2014)

    Article  Google Scholar 

  22. Baek, D.K., Khonsari, M.M.: Fretting behavior of a rubber coating: friction characteristics of rubber debris. Wear 261(10), 1114–1120 (2006). doi:10.1016/j.wear.2006.02.005

    Article  Google Scholar 

  23. Baek, D.K., Khonsari, M.M.: Fretting behavior of a rubber coating: effect of temperature and surface roughness variations. Wear 265(5–6), 620–625 (2008). doi:10.1016/j.wear.2007.12.002

    Article  Google Scholar 

  24. Fouvry, S., Kapsa, P., Vincent, L.: A multiaxial fatigue analysis of fretting contact taking into account the size effect. In: Hoeppner, D.W., Chandrasekaran, V., Elliot III, C.B. (eds.) Fretting Fatigue: Current Technology and Practices, vol. ASTM STP 1367, pp. 167–182. American Society for Testing and Materials Philadelphia, PA (2000)

    Chapter  Google Scholar 

  25. Neu, R.W., Pape, J.A., Swalla, D.R.: Methodologies for linking nucleation and propagation approaches for predicting life under fretting fatigue. In: Hoeppner, D.W., Chandrasekaran, V., Elliot III, C.B. (eds.) Fretting Fatigue: Current Technology and Practices, vol. STP 1367. American Society for Testing and Materials, Philadelphia, PA (2000)

    Google Scholar 

  26. Lykins, C.D., Mall, S., Jain, V.: A shear stress-based parameter for fretting fatigue crack initiation. Fatigue Fract. Eng. M 24(7), 461–473 (2001)

    Article  Google Scholar 

  27. Fouvry, S., Elleuch, K., Simeon, G.: Prediction of crack nucleation under partial slip fretting conditions. J. Strain Anal. Eng. 37(6), 549–564 (2002)

    Article  Google Scholar 

  28. Namjoshi, S.A., Mall, S., Jain, V.K., Jin, O.: Fretting fatigue crack initiation mechanism in Ti-6Al-4 V. Fatigue Fract. Eng. M 25(10), 955–964 (2002)

    Article  Google Scholar 

  29. Naboulsi, S., Mall, S.: Fretting fatigue crack initiation behavior using process volume approach and finite element analysis. Tribol. Int. 36(2), 121–131 (2003)

    Article  Google Scholar 

  30. Fouvry, S., Duo, P., Perruchaut, P.: A quantitative approach of Ti-6Al-4 V fretting damage: friction, wear and crack nucleation. Wear 257(9–10), 916–929 (2004). doi:10.1016/j.wear.2004.05.011

    Article  Google Scholar 

  31. Alfredsson, B., Cadario, A.: A study on fretting friction evolution and fretting fatigue crack initiation for a spherical contact. Int. J. Fatigue 26(10), 1037–1052 (2004). doi:10.1016/j.ijfatigue.2004.03.010

    Article  Google Scholar 

  32. Fridrici, V., Fouvry, S., Kapsa, P., Perruchaut, P.: Prediction of cracking in Ti-6Al-4 V alloy under fretting-wear: use of the SWT criterion. Wear 259(1–6), 300–308 (2005). doi:10.1016/j.wear.2004.11.026

    Article  Google Scholar 

  33. Proudhon, H., Fouvry, S., Yantio, G.R.: Determination and prediction of the fretting crack initiation: introduction of the (P, Q, N) representation and definition of a variable process volume. Int. J. Fatigue 28(7), 707–713 (2006). doi:10.1016/j.ijfatigue.2005.09.005

    Article  Google Scholar 

  34. Navarro, C., Munoz, S., Dominguez, J.: On the use of multiaxial fatigue criteria for fretting fatigue life assessment. Int. J. Fatigue 30(1), 32–44 (2008). doi:10.1016/j.ijfatigue.2007.02.018

    Article  Google Scholar 

  35. Lehtovaara, A., Rabb, R., Pasanen, A.: Modelling and evaluation of the fretting fatigue cracking risk in smooth spherical contacts. Tribol. Int. 44(11), 1526–1534 (2011). doi:10.1016/j.triboint.2010.10.016

    Article  Google Scholar 

  36. Aghdam, A.B., Beheshti, A., Khonsari, M.M.: On the fretting crack nucleation with provision for size effect. Tribol. Int. 47, 32–43 (2012). doi:10.1016/j.triboint.2011.10.001

    Article  Google Scholar 

  37. Slack, T.S., Leonard, B.D., Sadeghi, F.: Estimating life scatter in fretting fatigue crack initiation. Tribol. Trans. 56(4), 531–535 (2013). doi:10.1080/10402004.2013.766829

    Article  Google Scholar 

  38. Moobola, R., Nowell, D., Hills, D.A.: Surface roughness and crack initiation in fretting fatigue. In: Beynon, J.H., Brown, M.W., Lindley, T.C., Smith, R.A., Tomkins, B. (eds.) Engineering Against Fatigue : The Importance of Understanding the Fundamentals of the Fatigue Process in Counteracting Its Effects in Engineering Components and Structures, and to Reflect on the Contributions of K.J. Miller, Sheffield, UK, 17–21 March 1997, A.A. Balkema, Rotterdam, Netherlands. Brookfield, VT (1999)

  39. Kasarekar, A.T., Sadeghi, F., Tseregounis, S.: Fretting fatigue of rough surfaces. Wear 264(7–8), 719–730 (2008). doi:10.1016/j.wear.2007.06.016

    Article  Google Scholar 

  40. Lehtovaara, A., Rabb, R.: A numerical model for the evaluation of fretting fatigue crack initiation in rough point contact. Wear 264(9–10), 750–756 (2008). doi:10.1016/j.wear.2006.12.083

    Article  Google Scholar 

  41. Volchok, A., Halperin, G., Etsion, I.: The effect of surface regular microtopography on fretting fatigue life. Wear 253(3–4), 509–515 (2002). doi:10.1016/S0043-1648(02)00148-5

    Article  Google Scholar 

  42. Beheshti, A., Aghdam, A.B., Khonsari, M.M.: Deterministic surface tractions in rough contact under stick-slip condition: application to fretting fatigue crack initiation. Int. J. Fatigue 56, 75–85 (2013). doi:10.1016/j.ijfatigue.2013.08.007

    Article  Google Scholar 

  43. Smith, K.N., Watson, P., Topper, T.H.: A stress–strain function for fatigue of metals. J. Mater. 5(4), 767–778 (1970)

    Google Scholar 

  44. Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. M 11(3), 149–165 (1988)

    Article  Google Scholar 

  45. Socie, D.: Multiaxial fatigue damage models. J. Eng. Mater. Technol. ASME 109(4), 293–298 (1987)

    Article  Google Scholar 

  46. Araujo, J.A., Nowell, D.: The effect of rapidly varying contact stress fields on fretting fatigue. Int. J. Fatigue 24(7), 763–775 (2002)

    Article  Google Scholar 

  47. Jalalahmadi, B., Sadeghi, F.: A Voronoi FE fatigue damage model for life scatter in rolling contacts. J. Tribol. 132(2), 021404 (2010). doi:10.1115/1.4001012

  48. Beheshti, A., Khonsari, M.M.: A thermodynamic approach for prediction of wear coefficient under unlubricated sliding condition. Tribol. Lett. 38(3), 347–354 (2010). doi:10.1007/s11249-010-9614-4

    Article  Google Scholar 

  49. Beheshti, A., Khonsari, M.M.: On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. Tribol. Int. 1620–1628 (2011). doi:10.1016/j.triboint.2011.05.017

  50. Zhang, T., McHugh, P.E., Leen, S.B.: Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–272 (2012). doi:10.1016/j.ijfatigue.2012.04.011

    Article  Google Scholar 

  51. Hojjati-Talemi, R., Abdel Wahab, M.: Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approach. Tribol. Int. 60, 176–186 (2013)

    Article  Google Scholar 

  52. Hojjati-Talemi, R., Abdel Wahab, M., Giner, E., Sabsabi, M.: Numerical estimation of fretting fatigue lifetime using damage and fracture mechanics. Tribol. Lett. (2013). doi:10.1007/s11249-013-0189-8

  53. Ghosh, A., Leonard, B., Sadeghi, F.: A stress based damage mechanics model to simulate fretting wear of Hertzian line contact in partial slip. Wear 307(1), 87–99 (2013)

    Article  Google Scholar 

  54. Ireman, P., Klarbring, A., Stromberg, N.: A model of damage coupled to wear. Int. J. Solids Struct. 40(12), 2957–2974 (2003). doi:10.1016/S0020-7683(03)00121-5

    Article  Google Scholar 

  55. Leonard, B.D., Sadeghi, F., Shinde, S., Mittelbach, M.: Rough surface and damage mechanics wear modeling using the combined finite-discrete element method. Wear 305(1), 312–321 (2013)

    Article  Google Scholar 

  56. Quraishi, S.M., Khonsari, M.M., Baek, D.K.: A thermodynamic approach for predicting fretting fatigue life. Tribol. Lett. 19(3), 169–175 (2005). doi:10.1007/s11249-005-6143-7

    Article  Google Scholar 

  57. Ciavarella, M.: The generalized Cattaneo partial slip plane contact problem. I—Theory. Int. J. Solids Struct. 35(18), 2349–2362 (1998). doi:10.1016/S0020-7683(97)00154-6

    Article  Google Scholar 

  58. Jager, J.: A new principle in contact mechanics. J. Tribol. 120(4), 677–684 (1998)

    Article  Google Scholar 

  59. Bryant, M.D., Khonsari, M.M., Ling, F.F.: On the thermodynamics of degradation. Proc. R. Soc. A 464(2096), 2001–2014 (2008). doi:10.1098/rspa. 2007.0371

    Article  Google Scholar 

  60. Naderi, M., Khonsari, M.M.: A thermodynamic approach to fatigue damage accumulation under variable loading. Mater. Sci. Eng. A Struct. 527(23), 6133–6139 (2010). doi:10.1016/j.msea.2010.05.018

    Article  Google Scholar 

  61. Aghdam, A.B., Khonsari, M.M.: On the correlation between wear and entropy in dry sliding contact. Wear 270(11–12), 781–790 (2011). doi:10.1016/j.wear.2011.01.034

    Article  Google Scholar 

  62. Shojaei, A., Li, G.Q., Voyiadjis, G.Z.: Cyclic viscoplastic–viscodamage analysis of shape memory polymers fibers with application to self-healing smart materials. J. Appl. Mech. 80(1) (2013). doi:10.1115/1.4007140

  63. Voyiadjis, G.Z., Shojaei, A., Li, G.Q.: A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast 27(7), 1025–1044 (2011). doi:10.1016/j.ijplas.2010.11.002

    Article  Google Scholar 

  64. Voyiadjis, G.Z., Mozaffari, N.: Nonlocal damage model using the phase field method: theory and applications. Int. J. Solids Struct. 50(20–21), 3136–3151 (2013). doi:10.1016/j.ijsolstr.2013.05.015

    Article  Google Scholar 

  65. Amiri, M., Khonsari, M.M.: On the thermodynamics of friction and wear—a review. Entropy 12(5), 1021–1049 (2010). doi:10.3390/E12051021

    Article  Google Scholar 

  66. Khonsari, M.M., Amiri, M.: Introduction to Thermodynamics of Mechanical Fatigue. CRC Press, Taylor & Francis Group, Boca Raton, FL (2013). ISBN 978-1466511798

  67. Liakat, M., Khonsari, M.: An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading. Mater. Design 57, 289–297 (2014)

    Google Scholar 

  68. Bhattacharya, B.: A damage mechanics based approach to structural deterioration and reliability. Ph.D. thesis, John Hopkins University (1997)

  69. Lemaitre, J.: A Course on Damage Mechanics. Springer, Dordrecht (1992)

    Book  Google Scholar 

  70. Nowell, D., Hills, D.A.: Crack initiation criteria in fretting fatigue. Wear 136(2), 329–343 (1990)

    Article  Google Scholar 

  71. Fouvry, S., Kapsa, P., Vincent, L., Van, K.D.: Theoretical analysis of fatigue cracking under dry friction for fretting loading conditions. Wear 195(1–2), 21–34 (1996). doi:10.1016/0043-1648(95)06741-8

    Article  Google Scholar 

  72. Lykins, C.D., Mall, S., Jain, V.K.: Combined experimental-numerical investigation of fretting fatigue crack initiation. Int. J. Fatigue 23(8), 703–711 (2001)

    Article  Google Scholar 

  73. Munoz, S., Proudhon, H., Dominguez, J., Fouvry, S.: Prediction of the crack extension under fretting wear loading conditions. Int. J. Fatigue 28(12), 1769–1779 (2006). doi:10.1016/j.ijfatigue.2006.01.002

    Article  Google Scholar 

  74. Hills, D.A., Nowell, D.: What features are needed in a fretting fatigue test? Tribol. Int. 42(9), 1316–1323 (2009). doi:10.1016/j.triboint.2009.04.023

    Article  Google Scholar 

  75. Akbarzadeh, S., Khonsari, M.M.: Effect of surface pattern on Stribeck curve. Tribol. Lett. 37(2), 477–486 (2010). doi:10.1007/s11249-009-9543-2

    Article  Google Scholar 

  76. Kasarekar, A.T., Bolander, N.W., Sadeghi, F., Tseregounis, S.: Modeling of fretting wear evolution in rough circular contacts in partial slip. Int. J. Mech. Sci. 49(6), 690–703 (2007). doi:10.1016/j.ijmecsci.2006.08.021

    Article  Google Scholar 

  77. Venner, C.H.: Multilevel Solution of the EHL Line and Point Contact Problems. Universiteit Twente, Enschede (1991)

    Google Scholar 

  78. Boller, C., Seeger, T.: Materials Data for Cyclic Loading. Elsevier, Amsterdam (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khonsari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghdam, A.B., Beheshti, A. & Khonsari, M.M. Prediction of Crack Nucleation in Rough Line-Contact Fretting via Continuum Damage Mechanics Approach. Tribol Lett 53, 631–643 (2014). https://doi.org/10.1007/s11249-014-0300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0300-9

Keywords

Navigation