Skip to main content
Log in

The Assessment of Interface Adhesion of Cu/Ta/Black Diamond™/Si Films Stack Structure by Nanoindentation and Nanoscratch Tests

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The interface adhesion of the Cu/Ta/Black Diamond™ (SiOC:H, BD, low-k)/Si substrate films stack structure was investigated. During the nanoindentation tests, a series of indentations under varied maximum normal loads of 1–120 mN were carried out. Regular triangular marks were formed on the surface, and the material pileup around the marks was clearly observed. The delamination occurred first at the Cu/Ta interface with the critical normal load of about 3.14 mN. As the normal load increased to about 63.71 mN, the BD layer began to delaminate from the Si substrate, resulted from the propagation of the cracking within BD layer along the BD/Si interface. The failure behaviors of the stack structure during the nanoscratch tests were similar to that during the nanoindentation tests. At the scratch velocity of 500 μm/min, the critical normal loads for Cu/Ta and BD/Si interfaces delamination were around 15.55 and 27.44 mN, respectively. Furthermore, the critical normal loads were decreased with the increase of the scratch velocity. Due to the similarity between the nanoscratch test and the chemical mechanical polishing (CMP) process, these results implied that lower polishing speed was preferred to avoid the interface delamination during the CMP of Cu/low-k interconnect structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sekhar, V., Chai, T., Balakumar, S., Shen, L., Sinha, S., Tay, A., Yoon, S.: Influence of thickness on nanomechanical behavior of Black Diamond™ low dielectric thin films for interconnect and packaging applications. J. Mater. Sci. Mater. Electron. 20(1), 74–86 (2009)

    Article  Google Scholar 

  2. Liao, C.L., Guo, D., Wen, S.Z., Luo, J.B.: Effects of chemical additives of CMP slurry on surface mechanical characteristics and material removal of copper. Tribol. Lett. 45(2), 309–317 (2012)

    Article  Google Scholar 

  3. Chang, S.-Y., Huang, Y.-C.: Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests. Microelectron. Eng. 84(2), 319–327 (2007)

    Article  Google Scholar 

  4. Liao, C.L., Guo, D., Wen, S.Z., Lu, X.C., Luo, J.B.: Stress analysis of Cu/low-k interconnect structure during whole Cu-CMP process using finite element method. Microelectron. Reliab. 53(5), 767–773 (2013)

    Article  Google Scholar 

  5. Volinsky, A.A., Moody, N.R., Gerberich, W.W.: Cu Interfacial toughness measurements for thin films on substrates. Acta Mater. 50(3), 441–466 (2002)

    Article  Google Scholar 

  6. Kim, B.R., Ko, M.J.: The assessment of the fracture behavior in spin-on organosilicates by nanoindentation and nanoscratch tests. Thin Solid Films 517(11), 3216–3221 (2009)

    Article  Google Scholar 

  7. Volinsky, A.A., Vella, J.B., Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429(1), 201–210 (2003)

    Article  Google Scholar 

  8. Roy, S., Darque-Ceretti, E., Felder, E., Monchoix, H.: Cross-sectional nanoindentation for copper adhesion characterization in blanket and patterned interconnect structures: experiments and three-dimensional FEM modeling. Int. J. Fract. 144(1), 21–33 (2007)

    Article  Google Scholar 

  9. Ye, J., Kojima, N., Ueoka, K., Shimanuki, J., Nasuno, T., Ogawa, S.: Nanoscratch evaluation of adhesion and cohesion in SiC/low-k/Si stacked layers. J. Appl. Phys. 95(7), 3704–3710 (2004)

    Article  Google Scholar 

  10. Tayebi, N., Polycarpou, A.A., Conry, T.F.: Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. J. Mater. Res. 19(06), 1791–1802 (2004)

    Article  Google Scholar 

  11. Bull, S.J., Berasetegui, E.G.: An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 39(2), 99–114 (2006)

    Article  Google Scholar 

  12. Bull, S., Rickerby, D.: New developments in the modelling of the hardness and scratch adhesion of thin films. Surf. Coat. Technol. 42(2), 149–164 (1990)

    Article  Google Scholar 

  13. Lee, C.-C., Huang, J., Chang, S.-T., Wang, W.-C.: Adhesion investigation of low-k films system using 4-point bending test. Thin Solid Films 517(17), 4875–4878 (2009)

    Article  Google Scholar 

  14. Beegan, D., Chowdhury, S., Laugier, M.T.: The nanoindentation behaviour of hard and soft films on silicon substrates. Thin Solid Films 466(1–2), 167–174 (2004)

    Article  Google Scholar 

  15. Benayoun, S., Fouilland-Paillé, L., Hantzpergue, J.J.: Microscratch test studies of thin silica films on stainless steel substrates. Thin Solid Films 352(1–2), 156–166 (1999)

    Article  Google Scholar 

  16. Sánchez, J.M., El-Mansy, S., Sun, B., Scherban, T., Fang, N., Pantuso, D., Ford, W., Elizalde, M.R., Martinez-Esnaola, J.M., Martin-Meizoso, A., Gil-Sevillano, J., Fuentes, M., Maiz, J.: Cross-sectional nanoindentation: a new technique for thin film interfacial adhesion characterization. Acta Mater. 47(17), 4405–4413 (1999)

    Article  Google Scholar 

  17. Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141–162 (1998)

    Article  Google Scholar 

  18. Ocaña, I., Molina-Aldareguia, J.M., Gonzalez, D., Elizalde, M.R., Sánchez, J.M., Martínez-Esnaola, J.M., Gil Sevillano, J., Scherban, T., Pantuso, D., Sun, B., Xu, G., Miner, B., He, J., Maiz, J.: Fracture characterization in patterned thin films by cross-sectional nanoindentation. Acta Mater. 54(13), 3453–3462 (2006)

    Article  Google Scholar 

  19. Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  20. Tayebi, N., Conry, T.F., Polycarpou, A.A.: Determination of hardness from nanoscratch experiments: corrections for interfacial shear stress and elastic recovery. J. Mater. Res. 18(9), 2150–2162 (2003)

    Article  Google Scholar 

  21. Roy, S., Darque-Ceretti, E., Felder, E., Raynal, F., Bispo, I.: Experimental analysis and finite element modelling of nano-scratch test applied on 40–120 nm SiCN thin films deposited on Cu/Si substrate. Thin Solid Films 518(14), 3859–3865 (2010)

    Article  Google Scholar 

  22. Volinsky, A.A., Tymiak, N.I., Kriese, M.D., Gerberich, W.W., Hutchinson, J.W.: Quantitative modeling and measurement of copper thin film adhesion. In: Beltz, G.E., Selinger, R.L.B., Kim, K.S., Marder, M.P. (eds.) Fracture and Ductile Vs. Brittle Behavior-Theory, Modelling and Experiment, vol. 539. Materials Research Society Symposium Proceedings, pp. 277–290. Materials Research Society, Warrendale (1999)

  23. He, M., Gaire, C., Wang, G.C., Lu, T.M.: Study of metal adhesion on porous low-k dielectric using telephone cord buckling. Microelectron. Reliab. 51(4), 847–850 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from National Natural Science Foundation of China (Grant Nos. 91223202 and 51375255), 973 Project (Grant No. 2011CB013102), and the International Science and Technology Cooperation Project (No. 2011DFA70980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, C., Guo, D., Wen, S. et al. The Assessment of Interface Adhesion of Cu/Ta/Black Diamond™/Si Films Stack Structure by Nanoindentation and Nanoscratch Tests. Tribol Lett 53, 401–410 (2014). https://doi.org/10.1007/s11249-013-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0279-7

Keywords

Navigation