Tribology Letters

, Volume 53, Issue 2, pp 395–399 | Cite as

Elimination of Stick-Slip Motion in Sliding of Split or Rough Surface

  • Y. Kligerman
  • M. VarenbergEmail author
Original Paper


Here, we present a mass-less quasi-static model of stick-slip phenomenon built exclusively on the difference between higher static and lower kinetic friction force. The model allows explaining the disappearance of stick-slip motion when elastic surface slid in contact with rigid counter-face bears large amount of small outgrowths. Adjusting the model parameters, it is also possible simulating systems with different transient responses. The results obtained may also be helpful in understanding the variety of sliding behavior of different materials.


Surface topography Contact splitting Static friction Kinetic friction Statistics 



We acknowledge the support of the Israel Science Foundation (Grant No. 314/12).


  1. 1.
    Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)CrossRefGoogle Scholar
  2. 2.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  3. 3.
    Moore, D.F.: Principles and Applications of Tribology. Pergamon, Oxford (1975)Google Scholar
  4. 4.
    Dowson, D.: History of tribology, 3rd edn. Wiley, Chicester (2013)Google Scholar
  5. 5.
    Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)CrossRefGoogle Scholar
  6. 6.
    Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRefGoogle Scholar
  7. 7.
    Xia, K.W., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)CrossRefGoogle Scholar
  8. 8.
    Rubinstein, S.M., Cohen, G., Fineberg, J.: The dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)CrossRefGoogle Scholar
  9. 9.
    Yang, Z.P., Zhang, H.P., Marder, M.: Dynamics of static friction between steel and silicon. Proc. Natl. Acad. Sci. U.S.A. 105, 13264–13268 (2008)CrossRefGoogle Scholar
  10. 10.
    Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick: the evolution of frictional strength. Nature 463, 76–79 (2010)CrossRefGoogle Scholar
  11. 11.
    Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRefGoogle Scholar
  12. 12.
    Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRefGoogle Scholar
  13. 13.
    Capozza, R., Rubinstein, S.M., Barel, I., Urbakh, M., Fineberg, J.: Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)CrossRefGoogle Scholar
  14. 14.
    Bennewitz, R., David, J., de Lannoy, C.-F., Drevniok, B., Hubbard-Davis, P., Miura, T., Trichtchenko, O.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Mat. 20, 015004 (2008)CrossRefGoogle Scholar
  15. 15.
    Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988)Google Scholar
  16. 16.
    Beutel, R.G., Gorb, S.N.: Ultrastructure of attachment specializations of Hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207 (2001)CrossRefGoogle Scholar
  17. 17.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefGoogle Scholar
  18. 18.
    Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)CrossRefGoogle Scholar
  19. 19.
    Peattie, A.M., Full, R.J.: Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. U.S.A. 104, 18595–18600 (2007)CrossRefGoogle Scholar
  20. 20.
    Varenberg, M., Murarash, B., Kligerman, Y., Gorb, S.N.: Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103, 933–938 (2011)CrossRefGoogle Scholar
  21. 21.
    Schallamach, A.: How does rubber slide? Wear 17, 301–312 (1971)CrossRefGoogle Scholar
  22. 22.
    Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)CrossRefGoogle Scholar
  23. 23.
    Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRefGoogle Scholar
  24. 24.
    Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. Appl. Phys. Lett. 106, 064913 (2009)Google Scholar
  25. 25.
    Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)CrossRefGoogle Scholar
  26. 26.
    Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)CrossRefGoogle Scholar
  27. 27.
    Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Mat. 24, 225008 (2012)CrossRefGoogle Scholar
  28. 28.
    Zakharov, V.S.: Models of seismotectonic systems with dry friction. Mosc. Univ. Geol. Bull. 66, 13–20 (2011)CrossRefGoogle Scholar
  29. 29.
    Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)Google Scholar
  30. 30.
    Carlson, J.M., Langer, J.M.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632–2635 (1989)CrossRefGoogle Scholar
  31. 31.
    Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992)CrossRefGoogle Scholar
  32. 32.
    Persson, B.N.J.: Theory of friction: stress domains, relaxation, and creep. Phys. Rev. B. 51, 13568–13585 (1995)CrossRefGoogle Scholar
  33. 33.
    Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)CrossRefGoogle Scholar
  34. 34.
    Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)CrossRefGoogle Scholar
  35. 35.
    Akishin, P.G., Altaisky, M.V., Antoniou, I., Budnik, A.D., Ivanov, V.V.: Burridge-Knopoff model and self-similarity. Chaos Soliton. Fract. 11, 207–222 (2000)CrossRefGoogle Scholar
  36. 36.
    Bhushan, B.: Introduction to tribology, p. 208. Wiley, New York (2002)Google Scholar
  37. 37.
    Dyson, J., Hirst, W.: The true contact area between solids. P. Phys. Soc. B 67, 309–312 (1954)CrossRefGoogle Scholar
  38. 38.
    Persson, B.N.J.: On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnion-IITHaifaIsrael

Personalised recommendations