Tribology Letters

, Volume 53, Issue 1, pp 373–381

Investigation of Lubricant Transfer between Slider and Disk Using Molecular Dynamics Simulation

  • Deng Pan
  • Andrey Ovcharenko
  • Raj Tangaraj
  • Min Yang
  • Frank E. Talke
Original Paper


A model for lubricant transfer from a rotating magnetic recording disk to a magnetic recording slider is developed using molecular dynamics simulation. The combined effect of disk velocity and local air-bearing pressure changes on lubricant transfer is investigated. The simulation results indicate that local pressure changes in the absence of disk circumferential velocity can cause lubricant redistribution on the disk, while local pressure changes on a moving disk can result in lubricant transfer from the disk to the slider. The amount of lubricant transferred from the disk to the slider and the lubricant buildup on the disk are a function of the local pressure change and disk velocity. The amount of lubricant transferred from the disk to the slider and the height of lubricant buildup on the disk surface decrease with an increase in the number of functional groups of the disk, a decrease in the local pressure change, and a decrease in the disk circumferential velocity.


MD simulation Lubricant transfer Bonding ratio Hard disk drive 


  1. 1.
    Canchi, S.V., Bogy, D.B.: Experiments on slider lubricant interactions and lubricant transfer using TFC sliders. Microsyst. Technol. 18, 1517–1523 (2012)CrossRefGoogle Scholar
  2. 2.
    Ambekar, R.P., Bogy, D.B., Bhatia, C.S.: Lubricant depletion and disk-to-head lubricant transfer at the head-disk interface in hard disk drives. ASME J. Tribol. 131, 031901 (2009)CrossRefGoogle Scholar
  3. 3.
    Tschöp, W., Kremer, K., Hahn, O., Batoulis, J., Bürger, T.: Simulation of polymer melts. II. From coarse-grained models back to atomistic description. Acta Polym. 49, 75–79 (1998)CrossRefGoogle Scholar
  4. 4.
    Choi, H.J., Guo, Q., Chung, P.S., Jhon, M.S.: Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation. IEEE Trans. Magn. 43(2), 903–905 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Guo, Q., Jhon, M.S.: Effects of molecular structure on the conformation and dynamics of perfluoropolyether nanofilms. IEEE Trans. Magn. 43(6), 2247–2249 (2007)CrossRefGoogle Scholar
  6. 6.
    Guo, Q., Izumisawa, S., Phillips, D.M., Jhon, M.S.: Surface morphology and molecular conformation for ultrathin lubricant films with functional end groups. J. Appl. Phys. 93(10), 8707–8709 (2003)CrossRefGoogle Scholar
  7. 7.
    Li, X., Hu, Y., Wang, H.: Functional perfluoropolyether spreading on a solid substrate. J. Appl. Phys. 100(7), 074901 (2006)CrossRefGoogle Scholar
  8. 8.
    Ogata, S., Mitsuya, Y., Zhang, H., Fukuzawa, K.: Molecular dynamics simulation for analysis of surface morphology of lubricant films with functional and groups. IEEE Trans. Magn. 41(10), 3013–3015 (2005)CrossRefGoogle Scholar
  9. 9.
    Ogata, S., Zhang, H., Fukuzawa, K., Mitsuya, Y.: Quantification of the surface morphology of lubricant films with polar end groups using molecular dynamics simulation: periodic changes in morphology depending on film thickness. ASME J. Tribol. 130(2), 022301 (2008)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Wong, C.H., Li, B., Yu, S., Hua, W., Zhou, W.: Lubricant evolution and depletion under laser heating: a molecular dynamics study. Soft Matter 8, 5649–5657 (2012)CrossRefGoogle Scholar
  11. 11.
    Guo, X.-C., Knigge, B., Marchon, B., Waltman, R.J., Carter, M., Burns, J.: Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100, 044306 (2006)CrossRefGoogle Scholar
  12. 12.
    Guo, X.-C., Marchon, B., Wang, R.-H., Mate, C.M., Dai, Q., Waltman, R.J., Deng, H., Pocker, D., Xiao, Q.-F., Saito, Y., Ohtani, T.: A multidentate lubricant for use in hard disk drives at sub-nanometer thickness. J. Appl. Phys. 111, 024503 (2012)CrossRefGoogle Scholar
  13. 13.
    Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39(5), 2447–2449 (2003)CrossRefGoogle Scholar
  14. 14.
    Kim, S.H., Dai, Q., Marchon, B., Flechsig, K.: Humidity effects on lubricant transfer in the head-disk interface of a hard disk drive. J. Appl. Phys. 105, 7 (2009)Google Scholar
  15. 15.
    Zhao, Z., Bhushan, B.: Humidity effect on friction/stiction and durability of head-disk interface with polar perfluoropolyether lubricant. J. Appl. Phys. 81(8), 5387–5389 (1997)CrossRefGoogle Scholar
  16. 16.
    Lei, R.Z., Gellman, A.J.: Humidity effects on PFPE lubricant bonding to a–CHx overcoats. Langmir 16, 6628–6635 (2000)CrossRefGoogle Scholar
  17. 17.
    Tani, H., Iwasaki, K., Maruyama, Y., Ota, I., Tagawa, N.: Lubricant pickup of ultra-thin PFPE lubricants with different backbone structures. IEEE Trans. Magn. 47(7), 1837–1841 (2011)CrossRefGoogle Scholar
  18. 18.
    Waltman, R.J., Deng, H., Wang, G.J., Zhu, H., Tyndall, G.W.: The effect of PFPE film thickness and molecular polarity on the pick-up of lubricant by a low-flying slider. Tribol. Lett. 39, 211–219 (2010)CrossRefGoogle Scholar
  19. 19.
    Ma, X., Tang, H., Stirniman, M., Gui, J.: The effect of slider on lubricant loss and redistribution. IEEE Trans. Magn. 38(5), 2144–2146 (2002)CrossRefGoogle Scholar
  20. 20.
    Zhao, Z., Bhushan, B., Kajads, C.: Tribological performance of PFPE and X-1P lubricants at head-disk interface. Part II. Mech. Tribol. Lett. 6, 141–148 (1999)CrossRefGoogle Scholar
  21. 21.
    Chen, C.-Y., Bogy, D.B., Bhatia, C.S.: Effect of lubricant bonding fraction at the head-disk interface. Tribol. Lett. 10(4), 195–201 (2001)CrossRefGoogle Scholar
  22. 22.
    Yatsue, T., Ishihara, H., Matsumoto, H., Tani, H.: Design of carbon surface functional groups on the viewpoint of lubricant layer structure. Tribol. Trans. 43(4), 802–808 (2000)CrossRefGoogle Scholar
  23. 23.
    Das, D., Chen, K.H., Chattopadhyay, S., Chen, L.C.: Spectroscopic studies of nitrogenated amorphous carbon films prepared by ion beam sputtering. J. Appl. Phys. 91(8), 4944–4955 (2002)CrossRefGoogle Scholar
  24. 24.
    Kawaguchi, M., Choi, J., Kato, T.: Vacuum vapor deposition of PFPE molecules on CHxNy and CHxFy amorphous carbon surfaces. Microsyst. Technol. 13, 1431–1437 (2007)CrossRefGoogle Scholar
  25. 25.
    Anders, A., Fong, W., Kulkarni, A.V., Ryan, F.W., Bhatia, C.S.: Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs. IEEE Trans. Magn. 29(5), 768–775 (2001)Google Scholar
  26. 26.
    Aoyagi, T., Takimoto, J., Doi, M.: Molecular dynamics study of polymer melt confined between walls. J. Chem. Phys. 115(1), 552–559 (2001)CrossRefGoogle Scholar
  27. 27.
    Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64(6), 2375–2388 (1976)CrossRefGoogle Scholar
  28. 28.
    Ma, Y., Liu, B.: Lubricant transfer from disk to slider in hard disk drives. Appl. Phys. Lett. 90, 143516 (2007)CrossRefGoogle Scholar
  29. 29.
    Li, Z.F., Chen, C.-Y., Liu, J.J.: Study of head-disk interference at low-flying height. IEEE Trans. Magn. 39(5), 2462–2464 (2003)CrossRefGoogle Scholar
  30. 30.
    Tani, H., Kubota, M., Tsujiguchi, Y., Tagawa, N.: Visualization of lubricant pickup phenomena by lubricant thickness mapping on slider surface. Microsyst. Technol. 17, 1175–1178 (2011)CrossRefGoogle Scholar
  31. 31.
    Kubotera, H., Bogy, D.B.: Lubricant migration simulations on the flying head slider air-bearing surface in a hard disk drive. IEEE Trans. Magn. 43(9), 3710–3715 (2007)CrossRefGoogle Scholar
  32. 32.
    Kubotera, H., Bogy, D.B.: Effect of various physical factors on thin lubricant film migration on the flying head slider at the head-disk interface of hard disk drives. J. Appl. Phys. 102, 054309 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Deng Pan
    • 1
    • 3
  • Andrey Ovcharenko
    • 2
  • Raj Tangaraj
    • 2
  • Min Yang
    • 2
  • Frank E. Talke
    • 3
  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Western Digital CorporationSan JoseUSA
  3. 3.Center for Magnetic Recording ResearchUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations