Skip to main content
Log in

Atomistic Simulation of Frictional Sliding Between Cellulose Iβ Nanocrystals

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Sliding friction between cellulose Iβ nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be correlated with hydrogen bonding, it may not be the most significant factor in determining frictional behavior on cellulose nanocrystal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)

    Article  Google Scholar 

  2. Bergenstråhle, M., Berglund, L.A., Mazeau, K.: Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J. Phys. Chem. B 111(30), 9138–9145 (2007)

    Article  Google Scholar 

  3. Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)

    Article  CAS  Google Scholar 

  4. Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70(4), 449–459 (2009)

    Article  CAS  Google Scholar 

  5. Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96(23), 236102 (2006)

    Google Scholar 

  6. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)

    Article  Google Scholar 

  7. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol. A Vac. Surf. Films 31(3), 030801–030801 (2013)

    Article  Google Scholar 

  8. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367–386 (2011)

    Article  CAS  Google Scholar 

  9. Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)

    Article  Google Scholar 

  10. Eichhorn, S.J., Davies, G.R.: Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3), 291–307 (2006)

    Article  CAS  Google Scholar 

  11. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1), 57–65 (2007)

    Article  Google Scholar 

  12. Erbaş, A., Horinek, D., Netz, R.R.: Viscous friction of hydrogen-bonded matter. J. Am. Chem. Soc. 134(1), 623–630 (2011)

    Article  Google Scholar 

  13. Erbaş, A., Netz, R.R.: Confinement-dependent friction in peptide bundles. Biophys. J. 104(6), 1285–1295 (2013)

    Article  Google Scholar 

  14. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)

    Article  CAS  Google Scholar 

  15. Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76(15), 155429 (2007)

    Article  Google Scholar 

  16. Kontturi, E., Tammelin, T., Österberg, M.: Cellulose–model films and the fundamental approach. Chem. Soc. Rev. 35(12), 1287–1304 (2006)

    Article  CAS  Google Scholar 

  17. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005)

    Article  CAS  Google Scholar 

  18. Luzar, A., Chandler, D.: Hydrogen-bond kinetics in liquid water. Nature 379(6560), 55–57 (1996)

    Article  CAS  Google Scholar 

  19. Mattsson, T.R., Lane, J.M.D., Cochrane, K.R., Desjarlais, M.P., Thompson, A.P., Pierce, F., Grest, G.S.: First-principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 81(5), 054103 (2010)

    Article  Google Scholar 

  20. Mazeau, K., Heux, L.: Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107(10), 2394–2403 (2003)

    Article  CAS  Google Scholar 

  21. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)

    Article  CAS  Google Scholar 

  22. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  Google Scholar 

  23. Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci. 55(4), 241–249 (2009)

    Article  CAS  Google Scholar 

  24. Nishiyama, Y., Johnson, G.P., French, A.D., Forsyth, V.T., Langan, P.: Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9(11), 3133–3140 (2008)

    Article  CAS  Google Scholar 

  25. Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)

    Article  CAS  Google Scholar 

  26. Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Sabo, R., Wegner, T.H., Beecher, J.: Cellulose nanocrystals the next big nano-thing?. Proc. SPIE 7042, 70420D (2008)

    Google Scholar 

  27. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)

    Article  CAS  Google Scholar 

  28. Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)

    Article  CAS  Google Scholar 

  29. Stiernstedt, J., Brumer, H., Zhou, Q., Teeri, T.T., Rutland, M.W.: Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7), 2147–2153 (2006)

    Article  CAS  Google Scholar 

  30. Stiernstedt, J., Nordgren, N., Wågberg, L., Brumer III, H., Gray, D.G., Rutland, M.W.: Friction and forces between cellulose model surfaces: a comparison. J. Colloid Interface Sci. 303(1), 117–123 (2006)

    Article  CAS  Google Scholar 

  31. Tanaka, F., Okamura, K.: Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose 12(3), 243–252 (2005)

    Article  CAS  Google Scholar 

  32. Theander, K., Pugh, R.J., Rutland, M.W.: Friction force measurements relevant to de-inking by means of atomic force microscope. J. Colloid Interface Sci. 291(2), 361–368 (2005)

    Article  CAS  Google Scholar 

  33. Wu, X., Moon, R.J., Martini, A.: Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J. 10(4), 37–43 (2011)

    CAS  Google Scholar 

  34. Wu, X., Moon, R.J., Martini, A.: Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20(1), 43–55 (2013)

    Article  CAS  Google Scholar 

  35. Zauscher, S., Klingenberg, D.J.: Friction between cellulose surfaces measured with colloidal probe microscopy. Colloids Surf. A 178(1), 213–229 (2001)

    Article  CAS  Google Scholar 

  36. Zhang, Q., Bulone, V., Ågren, H., Tu, Y.: A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18(2), 207–221 (2011)

    Article  CAS  Google Scholar 

  37. Zhang, Q., Qi, Y., Hector Jr, L.G., Çağın, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α−Al2O3/α−Al2O3 interfaces. Phys. Rev. B 72(4), 045406 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support for this research provided by the Forest Products Laboratory under USDA Grant: 11-JV-11111129-087 – Atomic-Scale Modeling of Cellulose Nanocrystals, and Air Force Office of Sponsored Research Grant: FA9550-11-1-0162—Thermal and Mechanical Properties of Nanocellulosic Materials: Integrated Modeling and Experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawa Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Moon, R.J. & Martini, A. Atomistic Simulation of Frictional Sliding Between Cellulose Iβ Nanocrystals. Tribol Lett 52, 395–405 (2013). https://doi.org/10.1007/s11249-013-0223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0223-x

Keywords

Navigation