Tribology Letters

, Volume 54, Issue 3, pp 213–220 | Cite as

Characterization and Improvement of Axial and Radial Stiffness of Contactless Thrust Superconducting Magnetic Bearings

  • Ignacio Valiente-Blanco
  • Efren Diez-JimenezEmail author
  • Cristian Cristache
  • Marco A. Alvarez-Valenzuela
  • Jose L. Perez-Diaz
Original Paper


Contactless bearings based on both permanent magnets and superconducting magnetic levitation are interesting to avoid all the tribological problems associated with contact at very low temperature. Superconducting magnetic bearings (SMBs) find application in mechanical engineering where lack of contact is a requirement or an advantage. In comparison with active magnetic bearings (AMBs), SMBs solve their inherent instability and require less complex control strategies and electronics. However, one of the current limitations is their low mechanical stiffness. Force densities are considerably lower in SMB than the state-of-art values for AMB. This fact certainly limits their applications. In this chapter, we summarize some key strategies for the improvement of radial and axial stiffness among with a description of some SMB in terms of load capability or force relaxation and discuss their advantages and disadvantages. A set of rules for the mechanical design of high-stiffness thrust superconducting magnetic bearings are proposed and experimentally demonstrated.


Low-temperature tribology Superconducting magnetic bearing Thrust magnetic bearing Optimized magnetic bearings Stiffness magnetic bearing 



The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 263014.


  1. 1.
    Ostrovskaya, Y.L., Yukhno, T., Gamulya, G., Vvedenskij, Y.V., Kuleba, V.: Low temperature tribology at the B. Verkin Institute for Low Temperature Physics & Engineering (historical review). Tribol. Int. 34(4), 265–276 (2001)CrossRefGoogle Scholar
  2. 2.
    Theiler, G., Gradt, T., Klein, P.: Friction and wear of PTFE composites at cryogenic temperatures. Tribol. Int. 35, 449–458 (2002)CrossRefGoogle Scholar
  3. 3.
    Bassani, R., Villani, S.: Passive magnetic bearings: the conic-shaped bearing. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 213(2), 151–161 (1999)CrossRefGoogle Scholar
  4. 4.
    Bassani, R.: Levitation of passive magnetic bearings and systems. Tribol. Int. 39(9), 963–970 (2006)CrossRefGoogle Scholar
  5. 5.
    Bassani, R.: Magnetoelastic stability of magnetic axial bearings. Tribol. Lett. 49(2), 397–401 (2012)Google Scholar
  6. 6.
    Maslen, E.H., Allaire, P.E., Noh, M.D., Sortore, C.K.: Magnetic bearing design for reduced power consumption. J. Tribol. 118(4), 839 (1996)CrossRefGoogle Scholar
  7. 7.
    Di Puccio, F., Bassani, R., Ciulli, E., Musolino, A., Rizzo, R.: Permanent magnet bearings: analysis of plane and axisymmetric V-shaped element design. Prog. Electromagn. Res. M 26, 205–223 (2012)CrossRefGoogle Scholar
  8. 8.
    Musolino, A., Rizzo, R., Tucci, M., Matrosov, V.M.: A new passive Maglev system based on eddy current stabilization. IEEE Trans. Magn. 45(3), 984–987 (2009)CrossRefGoogle Scholar
  9. 9.
    Allaire, P.E., Maslen, E.H., Kim, H.C., Bearnson, G.B., Olsen, D.B.: Design of a magnetic bearing-supported prototype centrifugal artificial heart pump. Tribol. Trans. 39(3), 663–669 (1996)CrossRefGoogle Scholar
  10. 10.
    Kaur, R.G., Heshmat, H.: 100 mm diameter self-contained solid/powder lubricated auxiliary bearing operated at 30,000 rpm. Tribol. Trans. 45(1), 76–84 (2002)CrossRefGoogle Scholar
  11. 11.
    Tan, Q., Li, W., Liu, B.: Investigations on a permanent magnetic–hydrodynamic hybrid journal bearing. Tribol. Int. 35(7), 443–448 (2002)CrossRefGoogle Scholar
  12. 12.
    Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., Schirrmeister, P.: Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 25(1), 014007 (2012)CrossRefGoogle Scholar
  13. 13.
    Navarro et al., R.: Precision mechanism for optics in a vacuum cryogenic environment. Int. Conf. Space Opt. 1, 25–31 (2010) Google Scholar
  14. 14.
    Weisensel, G.N., McMasters, O.D., Chave, R.G.: Cryogenic magnetostrictive transducers and devices for commercial, military, and space applications. Proc. SPIE 3326, 459–470 (1998)CrossRefGoogle Scholar
  15. 15.
    Maillard, T., Claeyssen, F., LeLetty, R., Sosnicki, O., Pages, A., Vazquez Carazo, A.: Piezomechatronic-based systems in aircraft, space, and defense applications. Proc. SPIE 7331, 1–9 (2009)Google Scholar
  16. 16.
    Perez-Diaz, J.L., Valiente-Blanco, I., Diez-Jimenez, E., Sanchez-Garcia-Casarrubios, J.: Superconducting non-contact device for precision positioning in cryogenic environments. IEEE/ASME Trans. Mech. doi: 10.1109/TMECH.2013.2250988 (2013)
  17. 17.
    Iizuka, T., Maeda, Y., Aihara, K., Fujita, H.: A micro X-Y-θ conveyor by using superconducting magnetic levitation.pdf. In: IEEE Symposium on Emerging Technologies and Factory Automation, pp. 62–67 (1994)Google Scholar
  18. 18.
    Pérez-Díaz, J.-L., García-Prada, J.C., Diez-Jimenez, E., Valiente-Blanco, I., Sander, B., Timm, L., Sánchez-García-Casarrubios, J., Serrano, J., Romera, F., Argelaguet-Vilaseca, H., González-de-María, D.: Non-contact linear slider for cryogenic environment. Mech. Mach. Theory 49, 308–314 (2012)CrossRefGoogle Scholar
  19. 19.
    Serrano-Tellez, J., Romera-Juarez, F., Diez-Jimenez, E., Valiente-Blanco, I., Perez-Diaz, J., Sanchez-Casarrubios, J.: Experience on a cryogenic linear mechanism based on superconducting levitation. In: Navarro, R., Cunningham, C.R., Prieto, E. (eds.) Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, vol. 8450, p. 84501Y-1-9. SPIE (2012)Google Scholar
  20. 20.
    Morales, W., Fusaro, R., Kascak, A.: Permanent magnetic bearing for spacecraft applications. Tribol. Trans. 46(3), 460–464 (2003)CrossRefGoogle Scholar
  21. 21.
    Perez-Diaz, J.L., Garcia-Prada, J.C., Valiente-Blanco, I., Diez-Jimenez, E.: Magnetic-superconductor cryogenic non-contact harmonic drive: performance and dynamical behavior. In: Viadero, F., Ceccarelli, M. (eds) New Trends in Mechanism and Machine Science Mechanisms and Machine Science, vol. 7, pp. 357–364. Springer, Netherlands (2013) Google Scholar
  22. 22.
    Floegel-Delor, U., Rothfeld, R., Wippich, D., Goebel, B., Riedel, T., Werfel, F.: Fabrication of HTS bearings with ton load performance. IEEE Trans. Appl. Supercond. 17(2), 2142–2145 (2007)CrossRefGoogle Scholar
  23. 23.
    Habermann, H., Liard, G.: An active magnetic bearing system. Tribol. Int. 13(2), 85 (1980)CrossRefGoogle Scholar
  24. 24.
    Siems, S.O., Canders, W.-R.: Advances in the design of superconducting magnetic bearings for static and dynamic applications. Supercond. Sci. Technol. 18(2), S86–S89 (2005)CrossRefGoogle Scholar
  25. 25.
    Valiente-Blanco, I., Diez-Jimenez, E., Perez-Diaz, J.L.: Alignment effect between a magnet over a superconductor cylinder in the Meissner state. J. Appl. Phys. 109, 07E704 (2011)CrossRefGoogle Scholar
  26. 26.
    Diez-Jimenez, E., Perez-Diaz, J. L.: Foundations of meissner superconductor magnet mechanisms engineering. In: Superconductivity: Theory and Applications, pp. 153–172. Intech (2011)Google Scholar
  27. 27.
    Diez-Jimenez, E., Perez-Diaz, J.: Flip effect in the orientation of a magnet levitating over a superconducting torus in the Meissner state. Physica C 471(1–2), 8–11 (2011)CrossRefGoogle Scholar
  28. 28.
    Diez-Jimenez, E., Sander, B.: Tailoring of the flip effect in the orientation of a magnet levitating over a superconducting torus: geometrical dependencies. Physica C 471(7–8), 229–232 (2011)CrossRefGoogle Scholar
  29. 29.
    Perez-Diaz, J.L., Diez-Jimenez, E., Valiente-Blanco, I., Herrero-de-Vicente, J.: Stable thrust on a finite-sized magnet above a Meissner superconducting torus. J. Appl. Phys. 113(6), 063907 (2013)CrossRefGoogle Scholar
  30. 30.
    Diez-Jimenez, E., Valiente-Blanco, I., Perez-Diaz, J.: Superconducting sphere and finite-size permanent magnet: force, torque, and alignment effect calculation. J. Supercond. Novel Magn. 26(1), 71–75 (2012)CrossRefGoogle Scholar
  31. 31.
    Diez-Jimenez, E., Perez-Diaz, J.L., Garcia-Prada, J.C.: Mechanical method for experimental determination of the first penetration field in high-temperature superconductors. IEEE Trans. Appl. Supercond. 22, 5 (2012)CrossRefGoogle Scholar
  32. 32.
    Diez-Jimenez, E., Perez-Diaz, J.L., Castejon, C.: Finite element algorithm for solving supercondcuting Meissner repulsion forces. Int. Rev. Mech. Eng. 4(6), 673–675 (2010)Google Scholar
  33. 33.
    Diez-Jimenez, E., Perez-Diaz, J.L., Garcia-Prada, J.C.: Local model for magnet–superconductor mechanical interaction: experimental verification. J. Appl. Phys. 109(6), 063901 (2011)CrossRefGoogle Scholar
  34. 34.
    Ma, K.B., Lamb, M.A., Lin, M.W., Chow, L., Meng, R.L., Chu, W.K.: Practical adaptation in bulk superconducting magnetic bearing applications. Appl. Phys. Lett. 60(15), 1893–1895 (1992)Google Scholar
  35. 35.
    Hull, J.R.: Superconducting bearings. Supercond. Sci. Technol. 13, R1–R15 (2000)CrossRefGoogle Scholar
  36. 36.
    Marinescu, M., Marinescu, N., Tenbrink, J., Krauth, H.: Passive axial stabilization of a magnetic radial bearing by superconductors. IEEE Trans. Magn. 25(5), 3233–3235 (1989)CrossRefGoogle Scholar
  37. 37.
    Johansen, T.H., Riise, A.B., Bratsberg, H., Shen, Y.Q.: Magnetic levitation with high-T C superconducting thin films. Thin Films 11(5), 519–524 (1998)Google Scholar
  38. 38.
    Weinbergert, B.R., Lynds, L., Hull, J.R.: Magnetic bearings using high-temperature superconductors: some practical considerations. Supercond. Sci. Technol. 3, 380–381 (1990)Google Scholar
  39. 39.
    Cha, Y., Hull, J.R., Mulcahy, T.M., Rossing, T.D.: Effect of size and geometry on levitation force measurements between permanent magnets and high-temperature superconductors. J. Appl. Phys. 70(10), 6504–6506 (1991)CrossRefGoogle Scholar
  40. 40.
    Sotelo, G., Ferreira, A., Rubers de Andrade, F.: Halbach array superconducting magnetic bearing for a flywheel energy storage system. IEEE Trans. Appl. Supercond. 15(2), 2253–2256 (2005)CrossRefGoogle Scholar
  41. 41.
    Navau, C., Sanchez, A.: Stiffness and energy losses in cylindrically symmetric superconductor levitating systems. Supercond. Sci. Technol. 15(10), 1445–1453 (2002)CrossRefGoogle Scholar
  42. 42.
    Qin, Y., Hou, X.: Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway. Physica C 471(3–4), 118–120 (2011)CrossRefGoogle Scholar
  43. 43.
    Xia, Z., Chen, Q.Y., Ma, K.B., McMichael, C.K., Lamb, M., Cooley, R.S., Fowler, P.C., Chu, W.K.: Design of superconducting magnetic bearings with high levitating force for flywheel energy storage systems. IEEE Trans. Appl. Supercond. 5(2), 622–625 (1995)CrossRefGoogle Scholar
  44. 44.
    Wu, M.K., et al.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908–910 (1987)CrossRefGoogle Scholar
  45. 45.
    Diez-Jimenez, E., Perez-Diaz, J.L., Canepa, F., Ferdeghini, C.: Invariance of the magnetization axis under spin reorientation transitions in polycrystalline magnets of Nd2Fe14B. J. Appl. Phys. 112(6), 063918 (2012)CrossRefGoogle Scholar
  46. 46.
    Cansiz, A.: Vertical, radial and drag force analysis of superconducting magnetic bearings. Supercond. Sci. Technol. 22(7), 075003 (2009)CrossRefGoogle Scholar
  47. 47.
    McMichael, C.K., Wei-Kan, C.: High temperature superconducting magnetic bearings. U.S. Patent EP 0559839 B11997Google Scholar
  48. 48.
    Rigney II, T., Saville, M., McCarty, F.: Superconducting bearings. U.S. Patent EP 0558818 A11993Google Scholar
  49. 49.
    Sheahen, T.P.: Introduction to High-Temperature Superconductivity, pp. 29–31. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ignacio Valiente-Blanco
    • 2
  • Efren Diez-Jimenez
    • 1
    Email author
  • Cristian Cristache
    • 2
  • Marco A. Alvarez-Valenzuela
    • 1
  • Jose L. Perez-Diaz
    • 1
  1. 1.Department of Mechanical EngineeringUniversidad Carlos III de MadridLeganesSpain
  2. 2.Instituto Pedro Juan de LastanosaUniversidad Carlos III de MadridLeganesSpain

Personalised recommendations