Tribology Letters

, Volume 51, Issue 3, pp 513–523 | Cite as

A Multistate Friction Model Described by Continuous Differential Equations

Original Paper

Abstract

This paper proposes a multistate friction model derived from a set of differential-algebraic inclusions. This model is described as a set of continuous differential equations that describe both the presliding and sliding regimes in a unified expression. It reproduces major features of friction phenomena reported in the literature, such as the Stribeck effect, nondrifting property, stick–slip oscillation, presliding hysteresis with nonlocal memory, and frictional lag. Moreover, the new model does not produce unbounded positional drift or nonsmooth forces, which are major problems of previous models due to the mathematical difficulty in dealing with transitions between the presliding and sliding regimes. The model is validated through comparison between its simulation results and empirical results in the literature.

Keywords

Dynamic modeling Static friction Stick-slip 

References

  1. 1.
    Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic multistate friction model. In: Noda I., Ando N., Brugali D., Kuffner J.J. (eds.) Simulation, Modeling, and Programming for Autonomous Robots (Proceedings of SIMPAR2012). Lecture Notes in Computer Science, vol. 7628, pp. 77–88. Springer (2012)Google Scholar
  2. 2.
    Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45(4), 675–686 (2000)CrossRefGoogle Scholar
  3. 3.
    Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)CrossRefGoogle Scholar
  4. 4.
    Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol. Lett. 16(1-2), 95–105 (2004)CrossRefGoogle Scholar
  5. 5.
    Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of system with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)CrossRefGoogle Scholar
  6. 6.
    Olsson, H., Åström, K., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)CrossRefGoogle Scholar
  7. 7.
    Lampaert, V.: Modelling and control of dry sliding friction in mechanical systems. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium (2003)Google Scholar
  8. 8.
    Freidovich, L., Robertsson, A., Shiriaev, A., Johansson, R.: LuGre-model-based friction compensation. IEEE Trans. Control Syst. Technol. 18(1), 194–200 (2010)CrossRefGoogle Scholar
  9. 9.
    Tjahjowidodo, T., Al-Bender, F., Van Brussel, H., Symens, W.: Friction characterization and compensation in electro-mechanical systems. J. Sound Vib. 308(3-5), 632–646 (2007)CrossRefGoogle Scholar
  10. 10.
    Kikuuwe, R., Kobayashi, Y., Fujimoto, H.: Coulomb-friction-based needle insertion/withdrawal model and its discrete-time implementation. In: Proceedings of EuroHaptics 2006, pp. 207–212. Paris, France (2006)Google Scholar
  11. 11.
    Hale, J.G., Hohl, B., Hyon, S.H., Matsubara, T., Moraud, E.M., Cheng, G.: Highly precise dynamic simulation environment for humanoid robots. Adv. Robot. 22(10), 1075–1105 (2008)CrossRefGoogle Scholar
  12. 12.
    Dahl, P.: A Solid Friction Model. Tech. rep. Aerospace Corporation, El Segundo, CA (1968)Google Scholar
  13. 13.
    Åström, K.J., Canudas de Wit, C.: Revisiting the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)CrossRefGoogle Scholar
  14. 14.
    Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Autom. Control 47(5), 787–792 (2002)CrossRefGoogle Scholar
  15. 15.
    Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 2013, 320276 (2013). doi:10.1155/2013/320276
  16. 16.
    Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002)CrossRefGoogle Scholar
  17. 17.
    Al-Bender, F., Lampaert, V., Swevers, J.: Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. Chaos Interdiscip. J. Nonlinear Sci. 14(2), 446–450 (2004)CrossRefGoogle Scholar
  18. 18.
    Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)CrossRefGoogle Scholar
  19. 19.
    Boegli, M., De Laet, T., De Schutter, J., Swevers, J.: A Smoothed GMS friction model suited for gradient-based friction state estimation. In: Proceedings of 2012 American Control Conference, pp. 2627–2632. Fairmont Queen Elizabeth, Montréal, Canada (2012)Google Scholar
  20. 20.
    Boegli, M., De Laet, T., De Schutter, J., Swevers, J.: A Smoothed GMS friction model for moving Horizon friction state and parameter estimation. In: Proceedings of 12th IEEE International Workshop on Advanced Motion Control, pp. 1–6. Sarajevo, Bosnia and Herzegovina (2012)Google Scholar
  21. 21.
    Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16(1-2), 81–93 (2004)CrossRefGoogle Scholar
  22. 22.
    De Moerlooze, K., Al-Bender, F., Van Brussel, H.: A generalized asperity-based friction model. Tribol. Lett. 40(1), 113–130 (2010)CrossRefGoogle Scholar
  23. 23.
    Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Syst. Mag. 28(6), 64–81 (2008)CrossRefGoogle Scholar
  24. 24.
    Burridge, B.R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57(3), 341–371 (1967)Google Scholar
  25. 25.
    Filippov, A.E., Popov, V.L.: Modified Burridge-Knopoff model with state dependent friction. Tribol. Int. 43(8), 1392–1399 (2010)CrossRefGoogle Scholar
  26. 26.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics vol. 35. Springer-Verlag, Berlin (2008)Google Scholar
  27. 27.
    Jenkin, C.F.: A mechanical model illustrating the behaviour of metals under static and alternating loads. Engineering 114, 603 (1922)Google Scholar
  28. 28.
    Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. Trans. ASME J. Appl. Mech. 33(4), 893–900 (1966)CrossRefGoogle Scholar
  29. 29.
    Goldfarb, M., Celanovic, N.: A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. Trans. ASME J. of Dyn. Syst. Measurement Control 119, 478–485 (1997)CrossRefGoogle Scholar
  30. 30.
    Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press, London, U.K. (1968)Google Scholar
  31. 31.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer-Verlag, Berlin (2004)CrossRefGoogle Scholar
  32. 32.
    Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55(1), 45–51 (2006)CrossRefGoogle Scholar
  33. 33.
    Lampaert, V., Al-Bender, F., Swevers, J.: A generalized Maxwell-slip friction model appropriate for control purposes. In: Proceedings of IEEE International Conference on Physics and Control, pp. 1170–1177. Saint Petersburg, Russia (2003)Google Scholar
  34. 34.
    Grami, S., Bigras, P.: Identification of the GMS friction model based on a robust adaptive observer. Int. J. Model. Ident. Control 5(4), 297–304 (2008)CrossRefGoogle Scholar
  35. 35.
    Casanova, C.C., De Pieri, E.R., Moreno, U.F., Castelan, E.B.: Friction compensation in flexible joints robot with GMS model: Identification, control and experimental results. In: Proceedings of the International Federation of Automatic Control, pp. 11,793–11,798. Seoul, Korea (2008)Google Scholar
  36. 36.
    Nilkhamhang, I., Sano, A.: Adaptive friction compensation using the GMS model with polynomial Stribeck function. In: Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 1085–1090. Munich, Germany (2006)Google Scholar
  37. 37.
    Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. Robot. 22(6), 1176–1188 (2006)CrossRefGoogle Scholar
  38. 38.
    Bastien, J., Lamarque, C.H.: Persoz’s gephyroidal model described by a maximal monotone differential inclusion. Arch. Appl. Mech. 58(5), 393–407 (2008)CrossRefGoogle Scholar
  39. 39.
    Bastien, J., Schatzman, M., Lamarque, C.H.: Study of an elastoplastic model with an infinite number of internal. Eur. J. Mech. A Solids 21(2), 199–222 (2002)CrossRefGoogle Scholar
  40. 40.
    Gonthier, Y., Mcphee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Sys. Dyn. 11(3), 209–233 (2004)CrossRefGoogle Scholar
  41. 41.
    De Moerlooze, K., Al-Bender, F.: On the relationship between normal load and friction force in pre-sliding frictional contacts. Part 2: experimental investigation. Wear 269(3–4), 183–189 (2010)CrossRefGoogle Scholar
  42. 42.
    Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. Trans. ASME J. Tribol. 112(1), 147–152 (1990)CrossRefGoogle Scholar
  43. 43.
    Worden, K., Wong, C.X., Parlitz, U., Hornstein, A., Engster, D., Tjahjowidodo, T., Al-Bender, F., Rizos, D., Fassois, S.: Identification of pre-sliding and sliding friction dynamics: Grey box and black-box models. Mech. Syst. Signal Process. 21(1), 514–534 (2007)CrossRefGoogle Scholar
  44. 44.
    Ruderman, M., Bertram, T.: Two-state dynamic friction model with elasto-plasticity. Mech. Syst. Signal Process. 39(1–2), 316–332 (2013)CrossRefGoogle Scholar
  45. 45.
    Jamaludin, Z., Van Brussel, H., Swevers, J.: Friction compensation of an feed table using friction-model-based feedforward and an inverse-model-based disturbance observer. IEEE Trans. Industr. Electron. 56(10), 3848–3853 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Kyushu UniversityFukuokaJapan

Personalised recommendations