Skip to main content
Log in

An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction response of a lubricated interface under free sliding oscillating motion is investigated as a function of the contact pressure and the rheology of the lubricant in terms of viscosity and piezoviscosity. For loaded contacts, both velocity dependent friction, referred to as viscous damping, and friction independent of the instantaneous sliding velocity contribute to the energy dissipation. Viscous damping mainly corresponds to the dissipation in the lubricant meniscus surrounding the contact, while dissipation within the confined lubricated interface is mainly independent of the instantaneous sliding velocity. The friction coefficient independent of the instantaneous sliding velocity falls on a master curve for the wide range of tested operating conditions and lubricant rheological properties. The master curve is a logarithmic function of a dimensionless parameter corresponding to the ratio of the viscosity of the confined lubricant to the product of the pressure and a characteristic time. The physical meaning of this latter and the friction law are discussed considering the confined interface as a viscoelastic fluid or a non-Newtonian Eyring fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Radius of the contact area

c 0 :

Viscous damping coefficient without contact

h c :

Central film thickness

k :

Spring stiffness

m :

Moving mass

t c :

Characteristic time

x(t):

Displacement response

x max :

Initial displacement

E′:

Reduced Young’s modulus

E(t):

Energy decay

E i(t):

Energy dissipated by friction independent of the instantaneous sliding velocity

E v(t):

Energy dissipated by viscous friction

F n :

Applied normal force

M :

Dimensionless load parameter

P :

Mean contact pressure

P max :

Maximum contact pressure

R x :

Reduced radius of curvature

S :

Slide to roll ratio

\(\bar{U}\) :

Dimensionless velocity

U e :

Entraining velocity

U s :

Sliding velocity

α :

Piezoviscous coefficient

\(\bar{\alpha }\) :

Dimensionless piezoviscous coefficient

\(\dot{\gamma }\) :

Mean shear rate

\(\dot{\gamma }_{\text{E}}\) :

Effective shear rate

η 0 :

Dynamic viscosity at ambient pressure

η(P):

Dynamic viscosity under contact pressure

\(\bar{\eta }\) :

Dimensionless viscosity

μ :

Overall friction coefficient

\(\bar{\mu }\) :

Dimensionless sliding friction coefficient

μ k :

Friction coefficient independent of the instantaneous sliding velocity

τ :

Interfacial shear stress

τ 0 :

Eyring stress

\(\bar{\tau }_{\text{c}}\) :

Dimensionless shear stress in the centre of the contact

ζ :

Overall equivalent viscous damping coefficient

ζ 0 :

Equivalent viscous damping coefficient without contact

ζ k :

Equivalent viscous damping coefficient

Δ :

Energy decay curve error

Ω :

Circular natural frequency

References

  1. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts. Part 1: theoretical formulations. ASME J. Lubr. Technol. 98, 223–229 (1976)

    Article  Google Scholar 

  2. Nijenbanning, G., Venner, C.H., Moes, H.: Film thickness in elastohydrodynamically lubricated elliptic contacts. Wear 176(2), 217–229 (1994)

    Article  Google Scholar 

  3. Barus, C.: Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)

    Google Scholar 

  4. Roelands, C.J.: Correlational Aspect of Viscosity-Temperature-Pressure Relationships of Lubricating Oils. PhD thesis, Delft University of Technology, The Netherlands (1966)

  5. Houpert, L.: New results of traction force calculation in elastohydrodynamic contacts. ASME J. Tribol. 107, 241–248 (1985)

    Article  Google Scholar 

  6. Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamics oil films. Proc. R. Soc. A 356, 215–236 (1977)

    Article  CAS  Google Scholar 

  7. Bou-Chakra, E., Cayer-Barrioz, J., Mazuyer, D.: A non-Newtonian model based on Ree-Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol. Int. 43, 1674–1682 (2010)

    Article  CAS  Google Scholar 

  8. Jacod, B., Venner, C.H., Lugt, P.M.: A generalized traction curve for EHL contacts. ASME J. Tribol. 123, 248–253 (2001)

    Article  CAS  Google Scholar 

  9. Jacod, B., Venner, C.H., Lugt, P.M.: Extension of the friction mastercurve to limiting shear stress models. ASME J. Tribol. 125, 739–746 (2003)

    Article  Google Scholar 

  10. Nayak, R.: Contact vibrations. J. Sound Vib. 22(3), 297–322 (1972)

    Article  Google Scholar 

  11. Rigaud, E., Perret-Liaudet, J.: Experiments and numerical results on nonlinear vibrations of an impacting hertzian contact. Part 1: harmonic excitation. J. Sound Vib. 265(2), 289–307 (2003)

    Article  Google Scholar 

  12. Perret-Liaudet, J., Rigaud, E.: Experiments and numerical results on nonlinear vibrations of an impacting hertzian contact. Part 2: random excitation. J. Sound Vib. 265(2), 309–327 (2003)

    Article  Google Scholar 

  13. Nishikawa, H., Handa, K., Teshima, K., Matsuda, K., Kaneta, M.: Behavior of EHL films in cyclic squeeze motion. JSME Int J., Ser. C 38(3), 577–585 (1995)

    Google Scholar 

  14. Hess, D., Soom, A.: Normal vibrations and friction under harmonic loads: part 1: Hertzian contact. ASME J. Tribol. 113, 80–86 (1991)

    Article  Google Scholar 

  15. Ciulli, E.: Non-steady state non-conformal contacts: friction and film thickness studies. Meccanica 44, 409–425 (2009)

    Article  Google Scholar 

  16. Wang, J., Kaneta, M., Yang, P.: Numerical analysis of TEHL line contact problem under reciprocating motion. Tribol. Int. 38, 165–178 (2005)

    Article  Google Scholar 

  17. Nishikawa, H., Handa, K., Kaneta, M.: Behavior of EHL films in reciprocating motion. JSME Int J., Ser. C 38(3), 558–567 (1995)

    Google Scholar 

  18. Wang, J., Hashimoto, T., Nishikawa, H., Kaneta, M.: Pure rolling elastohydrodynamic lubrication of short stroke reciprocating motion. Tribol. Int. 38, 1013–1021 (2005)

    Article  CAS  Google Scholar 

  19. Hooke, C.J.: The minimum film thickness in line contacts during reversal of entrainment. J. Tribol. 115(1), 191–199 (1993)

    Article  Google Scholar 

  20. Petrousevitch, A.I., Kodnir, D.S., Salukvadze, R.G., Bakashvili, D.L., Schwarzman, V.S.: The investigation of oil film thickness in lubricated ball-race rolling contact. Wear 19(4), 369–389 (1972)

    Article  Google Scholar 

  21. Nishikawa, H., Kaneta, M.: Traction in EHL under pure sliding reciprocation with cyclic impact loading. JSME Int J., Ser. C 38(3), 568–576 (1995)

    Google Scholar 

  22. Rigaud, E., Perret-Liaudet, J., Belin, M., Martin, J.M.: A dynamical tribotest discriminating friction and viscous damping. Tribol. Int. 43(1–2), 320–329 (2010)

    Article  Google Scholar 

  23. Shankar, P., Kumar, M.: Experimental determination of the kinematic viscosity of glycerol-water mixtures. In: Proceedings of the Royal Society: Mathematical and Physical Sciences, Vol. 444, No. 1922, pp. 573–581 (1994)

  24. Rayleigh, J.: The theory of sound. Vol. 1, reprinted by Dover, New York, 1945, 35–40 (1877)

  25. Belin, M., Kakizawa, M., Rigaud, E.; Martin, J.M.: Dual characterization of boundary friction thanks to the harmonic tribometer: identification of viscous and solid friction contributions. J. Phys. Conf. Ser. 258(1) (2010)

  26. Stachowiak, G.W., Batchelor, A.W.: Engineering tribology, 3rd edn. Butterworth-Heinemann, Boston (2005)

    Google Scholar 

  27. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr F. Brémond for helpful discussions. They are indebted to the institute Carnot Ingénierie@Lyon (I@L) for its support and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rigaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigaud, E., Mazuyer, D. & Cayer-Barrioz, J. An Interfacial Friction Law for a Circular EHL Contact Under Free Sliding Oscillating Motion. Tribol Lett 51, 419–430 (2013). https://doi.org/10.1007/s11249-013-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0177-z

Keywords

Navigation