Skip to main content
Log in

Nonlocal Frictional Effects at Indentation of Elastic Materials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Indentation of elastic materials is investigated numerically using the finite element method. Large deformation theory is relied upon for accuracy. The study focuses on nonlocal frictional effects on relevant indentation quantities in the microindentation regime. The indentation quantities investigated include both local and global ones. It is shown that nonlocal frictional effects are small when global quantities are at issue, as is the case when conventional (Coulomb) theory of friction is used, also when these features are introduced at the ridges of a Vickers indenter where stress gradients are substantial. These effects are, however, shown to be of importance for particular indenter geometries as far as local field variables are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pethica, J.B., Hutchings, R., Oliver, W.C.: Hardness measurements at penetration depths as small as 20 nm. Phil. Mag. A48, 593–606 (1983)

    Google Scholar 

  2. Tabor, D.: Hardness of Metals. Cambridge University Press, Cambridge (1951)

    Google Scholar 

  3. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115–126 (1970)

    Article  Google Scholar 

  4. Storåkers, B., Biwa, S., Larsson, P.L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061–3083 (1997)

    Article  Google Scholar 

  5. Larsson, P.L.: On the mechanical behavior of global parameters in material characterization by sharp indentation testing. J. Testing Eval. 32, 310–321 (2004)

    Google Scholar 

  6. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  7. Wilshaw, T.R.: The Hertzian fracture test. J. Phys. D Appl. Phys. 4, 1567–1581 (1971)

    Article  Google Scholar 

  8. Fredriksson, P., Larsson, P.L.: Wedge indentation of thin films modeled by strain gradient plasticity. Int. J. Solids Struct. 45, 5556–5566 (2008)

    Article  Google Scholar 

  9. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  Google Scholar 

  10. Larsson, P.L.: Investigation of sharp contact at rigid plastic conditions. Int. J. Mech. Sci. 43, 895–920 (2001)

    Article  Google Scholar 

  11. Jang, J., Lance, M.J., Wen, S.Q., Tsui, T.Y., Pharr, G.M.: Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759–1770 (2005)

    Article  CAS  Google Scholar 

  12. Hertz, H.: Uber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  13. Spence, D.A.: The Hertz contact problem with finite friction. J. Elast. 5, 297–319 (1975)

    Article  Google Scholar 

  14. Hills, D.A., Sackfield, A.: The stress field induced by normal contact between dissimilar spheres. J. Appl. Mech. 54, 8–14 (1987)

    Article  Google Scholar 

  15. Borodich, F.M.: The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach). Int. J. Solids Struct. 30, 1513–1526 (1993)

    Article  Google Scholar 

  16. Giannakopoulos, A.E., Larsson, P.L.: Analysis of pyramid indentation of pressure sensitive hard metals and ceramics. Mech. Mater. 25, 1–35 (1997)

    Article  Google Scholar 

  17. Carlsson, S., Biwa, S., Larsson, P.L.: On frictional effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42, 107–128 (2000)

    Article  Google Scholar 

  18. Mata, M., Alcala, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145–165 (2004)

    Article  Google Scholar 

  19. Storåkers, B., Elaguine, D.: Hertz contact at finite friction and arbitrary profiles. J. Mech. Phys. Solids 53, 1422–1447 (2005)

    Article  Google Scholar 

  20. Jelagin, D., Larsson, P.-L.: On indentation and initiation of fracture in glass. Int. J. Solids Struct. 45, 2993–3008 (2008)

    Article  Google Scholar 

  21. Johnsson, K.L., O’Connor, J.J., Woodward, A.C.: The effect of indenter elasticity on the Hertzian fracture of brittle materials. Proc. R. Soc. London A 334, 95–117 (1973)

    Article  Google Scholar 

  22. Elaguine, D., Brudieu, M.-A., Storakers, B.: Hertzian fracture at unloading. J. Mech. Phys. Solids 54, 2453–2473 (2006)

    Article  CAS  Google Scholar 

  23. Lawn, B.R.: Indentation of ceramics with spheres: a century after Hertz. J. Am. Cer. Soc. 81, 1977–1994 (1998)

    Article  CAS  Google Scholar 

  24. Oden, J.T., Pires, E.B.: Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J. Appl. Mech. 50, 67–73 (1983)

    Article  Google Scholar 

  25. Olofsson, U., Hagman, L.A.: A model for micro-slip between flat surfaces based on deformation of ellipsoidal elastic bodies. Tribol. Int. 30, 599–603 (1997)

    Article  Google Scholar 

  26. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London A295, 300–319 (1966)

    Google Scholar 

  27. Johnson, K.L., Greenwood, J.A., Higginson, J.G.: The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 27, 383–396 (1985)

    Article  Google Scholar 

  28. Corbone, G., Bottiglione, F.: Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572 (2008)

    Article  Google Scholar 

  29. Lim, Y.Y., Chaudhri, M.M.: Indentation of elastic solids with rigid cones. Phil. Mag. 84, 2877–2903 (2004)

    Article  CAS  Google Scholar 

  30. Lim, Y.Y., Chaudhri, M.M.: Indentation of elastic solids with a rigid Vickers pyramid indenter. Mech. Mater. 38, 1213–1228 (2006)

    Article  Google Scholar 

  31. ABAQUS. User’s manual version 6.9, Hibbitt, Karlsson and Sorensen Inc., Pawtucket, 2009

  32. Zhong, Z.H.: Contact problems with friction. Proceedings of Numiform 89, Balkema, Rotterdam, 1989, pp. 599–606

  33. Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679–2708 (1994)

    Article  Google Scholar 

  34. Larsson, P.L., Söderlund, E., Giannakopoulos, A.E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)

    Article  Google Scholar 

  35. Xu, Z.H., Li, X.: Effects of indenter geometry and material properties on the correction factor of Sneddon’s relationship for nanoindentation of elastic and elastic–plastic materials. Acta Mater. 56, 1399–1405 (2008)

    Article  CAS  Google Scholar 

  36. Mesarovic, S.D., Fleck, N.A.: Frictionless indentation of dissimilar elastic–plastic spheres. Int. J. Solids Struct. 37, 7071–7091 (2000)

    Article  Google Scholar 

  37. Larsson, P.L.: Modelling of sharp indentation experiments: some fundamental issues. Phil. Mag. 86, 5155–5177 (2006)

    Article  CAS  Google Scholar 

  38. Larsson, P.L.: Similarity methods for analysing indentation contact problems—Advantages and disadvantages. J. Mater. Proc. Tech. 202, 15–21 (2008)

    Article  CAS  Google Scholar 

  39. ABAQUS. Theory manual version 6.9, Hibbitt, Karlsson and Sorensen Inc., Pawtucket, 2009

  40. Laursen, T.A., Simo, J.C.: A study of the mechanics of microindentation using finite-elements. J. Mater. Res. 7, 618–626 (1992)

    Article  CAS  Google Scholar 

  41. Hay, J.C., Bolshakov, A., Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296–22305 (1999)

    Article  CAS  Google Scholar 

  42. Larsson, P.L., Giannakopoulos, A.E.: Tensile stresses and their implication to cracking at pyramid indentation of pressure-sensitive hard metals and ceramics. Mater. Sci. Eng. A254, 268–281 (1998)

    CAS  Google Scholar 

  43. Swaddiwudhipong, S., Hua, J., Tho, K.K., Liu, Z.S.: Equivalency of Berkovich and conical load-indentation curves. Modell. Simul. Mater. Sci. Eng. 14, 71–82 (2006)

    Article  CAS  Google Scholar 

  44. Antunes, J.M., Menezes, L.F., Fernandes, J.V.: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Solids Struct. 43, 784–806 (2005)

    Article  Google Scholar 

  45. Eriksson, C.L., Larsson, P.L., Rowcliffe, D.J.: Strain-hardening and residual stress effects in plastic zones around indentations. Mater Sci Eng A340, 193–203 (2003)

    Google Scholar 

  46. Jelagin, D., Larsson, P.-L.: Hertzian fracture at finite friction: a parametric study. Wear 265, 840–848 (2008)

    Article  CAS  Google Scholar 

  47. Hagman, L.A., Olofsson, U.: A model for micro-slip between flat surfaces based on deformation of ellipsoidal elastic asperities—parametric study and experimental investigation. Tribol. Int. 31, 209–217 (1998)

    Article  CAS  Google Scholar 

  48. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Jelagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelagin, D., Larsson, PL. Nonlocal Frictional Effects at Indentation of Elastic Materials. Tribol Lett 51, 397–407 (2013). https://doi.org/10.1007/s11249-013-0172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0172-4

Keywords

Navigation