Skip to main content
Log in

A Friction Evaluation Method Based on Barrel Compression Test

  • Methods Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To further understand the tribological performance in metal forming, it is critical to accurately evaluate the friction between tool and workpiece. However, the unclear contact conditions at the interfaces and the complex mechanisms of the tribology lead to challenges to assess friction in metal forming processes. In this study, a friction evaluation method by the barrel compression test and its principle model were proposed based on the theoretical analysis and the numerical simulations. Besides the friction factor at the die–specimen interfaces and the initial aspect ratio of the specimen, the strain hardening exponent of the specimen was found to affect the barreling profiles based on the theoretical analysis. Furthermore, the effects of the three influencing factors, including the friction factor at the interfaces, the initial aspect ratio and the strain hardening exponent of the specimen, on the defined barreling factor were numerically analyzed by the finite element method. A predictive model of the barreling factor accounting for these three factors was developed. A friction evaluation method, proposed based on this model, was implemented by various cylinder compression experiments of CuZn40 brass. The method proposed in this study provided a convenient means to identify the contact friction in metal forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Engel, U., Eckstein, R.: Microforming—from basic research to its realization. J. Mater. Process. Tech. 125–126, 35–44 (2002)

    Article  Google Scholar 

  2. Kim, G.-Y., Koc, M., Ni, J.: Experimental and numerical investigations on microcoining of stainless steel 304. J. Manuf. Sci. Eng. Trans. ASME 130(4), 041017 (2008)

    Article  Google Scholar 

  3. Yao, Z., Kim, G.-Y., Faidley, L., Zou, Q., Mei, D., Chen, Z.: Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J. Mater. Process. Tech. 212(3), 640–646 (2012)

    Article  CAS  Google Scholar 

  4. Yao, Z., Kim, G.-Y., Faidley, L., Zou, Q., Mei, D., Chen, Z.: Experimental study of high-frequency vibration assisted micro/mesoscale forming of metallic materials. J. Manuf. Sci. Eng. Trans. ASME 133(6), 061009 (2011)

    Article  Google Scholar 

  5. Engel, U.: Tribology in microforming. Wear 260(3), 265–273 (2004)

    Article  Google Scholar 

  6. Avitzur, B.: Handbook of Metal-Forming Processes. Wiley, New York (1983)

    Google Scholar 

  7. Jung, K.H., Lee, H.C., Ajiboye, J.S., Im, Y.T.: Characterization of frictional behavior in cold forging. Tribol. Lett. 37(2), 353–359 (2010)

    Article  CAS  Google Scholar 

  8. Yang, T.S., Lo, S.W.: Contact simulation for predicting surface topography in metal forming. Tribol. Lett. 23(2), 121–129 (2006)

    Article  CAS  Google Scholar 

  9. Wang, C., Guo, B., Shan, D., Bai, X.: Tribological behaviors of DLC film deposited on female die used in strip drawing. J. Mater. Process. Tech. 213(3), 323–329 (2013)

    Article  CAS  Google Scholar 

  10. Blau, P.J.: Friction Science and Technology: from Concepts to Applications, 2nd edn. CRC Press, Boca Raton, FL (2009)

    Google Scholar 

  11. Avitzur, B.: Metal Forming: Processes and Analysis, McGraw-Hill Series in Materials Science and Engineering. McGraw-Hill, New York (1968)

    Google Scholar 

  12. Yeh, W.C., Wu, M.C.: A variational upper-bound method for analysis of upset forging of rings. J. Mater. Process. Tech. 170(1–2), 392–402 (2005)

    Article  CAS  Google Scholar 

  13. Altinbalik, T., Çan, Y.: An upper bound analysis and determination of the barrelling profile in upsetting. Indian J. Eng. Mater. Sci. 18(6), 416–424 (2011)

    Google Scholar 

  14. Sofuoglu, H., Rasty, J.: On the measurement of friction coefficient utilizing the ring compression test. Tribol. Int. 32(6), 327–335 (1999)

    Article  Google Scholar 

  15. Ebrahimi, R., Najafizadeh, A.: A new method for evaluation of friction in bulk metal forming. J. Mater. Process. Tech. 152(2), 136–143 (2004)

    Article  CAS  Google Scholar 

  16. Dadras, P.: A semi-empirical solution to upset forging. J. Eng. Ind. Trans. ASME 103(4), 478–483 (1981)

    Article  CAS  Google Scholar 

  17. Lee, C.H., Altan, T.: Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders. J. Eng. Ind. Trans. ASME 94(3), 775–782 (1972)

    Article  Google Scholar 

  18. Schey, J.A., Venner, T.R., Takomana, S.L.: Shape changes in the upsetting of slender cylinders. J. Eng. Ind. Trans. ASME 104(1), 79–83 (1982)

    Article  Google Scholar 

  19. Sivaprasad, P.V., Davies, C.H.J.: An assessment of the interface friction factor using the geometry of upset specimens. Model. Simul. Mater. Sci. Eng. 13(3), 355–360 (2005)

    Article  CAS  Google Scholar 

  20. Kaviti, A.K., Prakash, O., Vishwanath, P.: Friction calibration map for determination of equal frictional conditions. Adv. Appl. Sci. Res. 2(5), 279–289 (2011)

    Google Scholar 

  21. Kaviti, A.K., Prakash, O., Kumar, P.V.: Prediction of coefficient of friction for aluminum billet. Arch. Appl. Sci. Res. 3(4), 328–335 (2011)

    Google Scholar 

  22. Li, Y.P., Onodera, E., Chiba, A.: Evaluation of friction coefficient by simulation in bulk metal forming process. Metall. Mater. Trans. A 41A(1), 224–232 (2010)

    Article  CAS  Google Scholar 

  23. Hsu, Y.C., Yang, T.S., Sung, S.Y., Chang, S.Y.: Constructing the predictive models of friction coefficient using cylindrical compression testing. Mater. Sci. Forum 505–507, 745–750 (2006)

    Article  Google Scholar 

  24. Li, Y.P., Onodera, E., Chiba, A.: Friction coefficient in hot compression of cylindrical sample. Mater. Trans. 51(7), 1210–1215 (2010)

    Article  CAS  Google Scholar 

  25. Solhjoo, S.: A note on “barrel compression test”: a method for evaluation of friction. Comp. Mater. Sci. 49(2), 435–438 (2010)

    Article  Google Scholar 

  26. Campbell, F.C.: Elements of Metallurgy and Engineering Alloys. ASM International, Materials Park, Ohio (2008)

    Google Scholar 

  27. Banerjee, J.K.: Barreling of solid cylinders under axial-compression. J. Eng. Mater. Trans. ASME 107(2), 138–144 (1985)

    Article  Google Scholar 

  28. Çetinarslan, C.S.: Effect of aspect ratio on barreling contour and variation of total surface area during upsetting of cylindrical specimen. Mater. Des. 28(6), 1907–1913 (2007)

    Article  Google Scholar 

  29. Narayanasamy, R., Sathiyanarayanan, S., Ponalagusamy, R.: A study on barrelling in magnesium alloy solid cylinders during cold upset forming. J. Mater. Process. Tech. 101(1–3), 64–69 (2000)

    Article  Google Scholar 

  30. Reardon, A.C.: Metallurgy for the Non-metallurgist, 2nd edn. ASM International, Materials Park, Ohio (2011)

    Google Scholar 

  31. Lai, C.-D., Murthy, D.N., Xie, M.: Weibull distributions and their applications. In: Pham, H. (ed.) Springer Handbook of Engineering Statistics, pp. 63–78. Springer, London (2006)

    Chapter  Google Scholar 

  32. Malama, B., Kulatilake, P.: Models for normal fracture deformation under compressive loading. Int. J. Rock Mech. Min. 40(6), 893–901 (2003)

    Article  Google Scholar 

  33. Stroud, P.D., Sydoriak, S.J., Riese, J.M., Smith, J.P., Mniszewski, S.M., Romero, P.R.: Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing. Math. Biosci. 203(2), 301–318 (2006)

    Article  Google Scholar 

  34. Yao, Z., Kim, G.-Y., Wang, Z., Faidley, L., Zou, Q., Mei, D., Chen, Z.: Acoustic softening and residual hardening in aluminum: modeling and experiments. Int. J. Plast. 39, 75–87 (2012)

    Article  CAS  Google Scholar 

  35. Hatch, J.E.: Aluminum: Properties and Physical Metallurgy. American Society for Metals, Metals Park, Ohio (1984)

    Google Scholar 

  36. Gurugubelli, S.N.: Experimental investigations on bulge profile of Al–Mg alloys during cold upsetting. Int. J. Sci. Adv. Tech. 2(5), 184–186 (2012)

    Google Scholar 

  37. Sahin, M., Çetinarslan, C.S., Misirli, C.: Materials flow for different lubricants during cold forming. Ind. Lubr. Tribol. 65(5) (2013, in press). http://www.emeraldinsight.com/journals.htm?articleid=17047078

Download references

Acknowledgments

The authors greatly appreciate the financial supports from Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51221004), National Natural Science Foundation of China (Grant No. 50930005, 51175460), Zhejiang Provincial Natural Science Foundation of China (Grant No. Z1090373) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110101110011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqing Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Mei, D., Shen, H. et al. A Friction Evaluation Method Based on Barrel Compression Test. Tribol Lett 51, 525–535 (2013). https://doi.org/10.1007/s11249-013-0164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0164-4

Keywords

Navigation