Skip to main content
Log in

Identifying Erosion Mechanism: A Novel Approach

  • Methods Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Understanding the erosion mechanism is a key to improve the performance of material subjected to erosive condition. Capability to predict the erosion mechanism could prove to be useful tool. In this work, a parameter named “erosion mechanism identifier,” ξ, is proposed to predict the erosion mechanism in materials. Suitability of ξ in predicting erosion mechanism of ductile and brittle materials was evaluated using the data reported in the literature. It was observed that ξ is able to predict the erosion mechanism for both categories of material. The predictability of ξ was not restrained by different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

E :

Erosion rate

H :

Hardness

K :

Toughness

V :

Volume loss

m :

Mass of erodent particles

v :

Velocity of erodent particles

η :

Erosion efficiency

ξ :

Erosion mechanism identifier

σ :

Critical stress

σ u :

Ultimate tensile strength

σ R :

Transverse rupture strength

τ u :

Ultimate shear strength

References

  1. Finnie, I.: Some reflections on the past and future of erosion. Wear 186–187, 1–10 (1995)

    Article  Google Scholar 

  2. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Burlington (2005)

    Google Scholar 

  3. Levy, A.V.: Solid Particle Erosion and Erosion-Corrosion of Materials. ASM International, Ohio (1995)

  4. Finnie, I.: Erosion of surfaces by solid particles. Wear 3(2), 87–103 (1960)

    Article  Google Scholar 

  5. Hutchings, I.M.: Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London (1992)

    Google Scholar 

  6. Sundararajan, G., Roy, M., Venkataraman, B.: Erosion efficiency-a new parameter to characterize the dominant erosion micromechanism. Wear 140(2), 369–381 (1990)

    Article  CAS  Google Scholar 

  7. Kleis, I.: Probleme der Bestimmung des Strahlverschleisses bei metallen. Wear 13(3), 199–215 (1969)

    Article  Google Scholar 

  8. Cousens, A.K., Hutchings, I.M.: A critical study of the erosion of an aluminium alloy by solid spherical particles at normal impingement. Wear 88(3), 335–348 (1983)

    Article  Google Scholar 

  9. Reddy, A.V., Sundararajan, G.: Erosion behaviour of ductile materials with a spherical non-friable erodent. Wear 111(3), 313–323 (1986)

    Article  Google Scholar 

  10. Sheldon, G.L., Finnie, I.: On the ductile behavior of nominally brittle materials during erosive cutting. J. Eng. Ind. 88(4), 387–392 (1966)

    Article  CAS  Google Scholar 

  11. IImar Kleis, P.K.: Solid Particle Erosion: Occurrence Prediction and Control. Springer, London (2008)

    Google Scholar 

  12. Gahr, K.H.Z.: Modelling of two-body abrasive wear. Wear 124(1), 87–103 (1988)

    Article  Google Scholar 

  13. Zu, J.B., Burstein, G.T., Hutchings, I.M.: A comparative study of the slurry erosion and free-fall particle erosion of aluminium. Wear 149(1–2), 73–84 (1991)

    Article  CAS  Google Scholar 

  14. Guo, D.Z., Wang, L.J., Li, J.Z.: Erosive wear of low chromium white cast iron. Wear 161(1–2), 173–178 (1993)

    Article  CAS  Google Scholar 

  15. Abouel-Kasem, A.: Particle size effects on slurry erosion of 5117 steels. J. Tribol. 133(1), 014502 (2011)

    Article  Google Scholar 

  16. Grewal, H.S., Bhandari, S., Singh, H.: Parametric study of slurry-erosion of hydroturbine steels with and without detonation gun spray coatings using taguchi technique. Metall. Mater. Trans. A 43(9), 3387–3401 (2012)

    Article  CAS  Google Scholar 

  17. Chauhan, A.K., Goel, D.B., Prakash, S.: Erosion behaviour of hydro turbine steels. Bull. Mater. Sci. 31(2), 115–120 (2008)

    Google Scholar 

  18. Chauhan, A.K., Goel, D.B., Prakash, S.: Solid particle erosion behaviour of 13Cr–4Ni and 21Cr–4Ni–N steels. J. Alloy. Compd. 467(1–2), 459–464 (2009)

    Article  CAS  Google Scholar 

  19. Ambrosini, L., Bahadur, S.: Erosion of AISI 4140 steel. Wear 117(1), 37–48 (1987)

    Article  Google Scholar 

  20. Brown, R., Edington, J.W.: Erosion of copper single crystals under conditions of 30° incidence. Wear 79(3), 335–346 (1982)

    Article  Google Scholar 

  21. Fuyan, L., Hesheng, S.: The effect of impingement angle on slurry erosion. Wear 141(2), 279–289 (1991)

    Article  Google Scholar 

  22. Grewal, H.S., Singh, H.: To Study the Effect of Impingement Angle on Slurry Erosion Behaviour of Aluminium and Cast Iron. Report (2012)

  23. Wright, I.G., Shetty, D.K., Clauer, A.H.: Slurry erosion of WC-Co cermets and its relationship to materials properties. In: Field, J.E., Corney, N.S. (eds.) Proceedings 6th International Conference Erosion by Liquid and Solid Impact, Cambridge, UK September 1983. Cavendish Laboratory, University of Cambridge, Cambridge (1983)

  24. Fang, Q., Sidky, P.S., Hocking, M.G.: Erosion and corrosion of PSZ-zirconia and the t-m phase transformation. Wear 233–235, 615–622 (1999)

    Article  Google Scholar 

  25. Oka, Y.I., Yoshida, T.: Practical estimation of erosion damage caused by solid particle impact: part 2: mechanical properties of materials directly associated with erosion damage. Wear 259(1–6), 102–109 (2005)

    Article  CAS  Google Scholar 

  26. Bellman Jr, R., Levy, A.: Erosion mechanism in ductile metals. Wear 70(1), 1–27 (1981)

    Article  CAS  Google Scholar 

  27. Allen, C., Sheen, M., Williams, J., Pugsley, V.A.: The wear of ultrafine WC-Co hard metals. Wear 250(1–12), 604–610 (2001)

    Article  Google Scholar 

  28. Beste, U., Hammerström, L., Engqvist, H., Rimlinger, S., Jacobson, S.: Particle erosion of cemented carbides with low Co content. Wear 250(1–12), 809–817 (2001)

    Article  Google Scholar 

  29. Bhagat, R.B., Conway Jr, J.C., Amateau, M.F., Brezler Iii, R.A.: Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model. Wear 201(1–2), 233–243 (1996)

    Article  CAS  Google Scholar 

  30. Hussainova, I., Kolesnikova, A., Hussainov, M., Romanov, A.: Effect of thermo-elastic residual stresses on erosive performance of cermets with core-rim structured ceramic grains. Wear 267(1–4), 177–185 (2009)

    Article  CAS  Google Scholar 

  31. Hussainova, I., Kubarsepp, J., Pirso, J.: Mechanical properties and features of erosion of cermets. Wear 250(1–12), 818–825 (2001)

    Article  Google Scholar 

  32. Hussainova, I.: Microstructure and erosive wear in ceramic-based composites. Wear 258(1–4), 357–365 (2005)

    Article  CAS  Google Scholar 

  33. Hussainova, I., Pirso, J., Antonov, M., Juhani, K., Letunovits, S.: Erosion and abrasion of chromium carbide based cermets produced by different methods. Wear 263(7–12), 905–911 (2007)

    Article  CAS  Google Scholar 

  34. Anya, C.C.: Wet erosive wear of alumina and its composites with SiC nano-particles. Ceram. Int. 24(7), 533–542 (1998)

    Article  CAS  Google Scholar 

  35. Fang, Q., Xu, H., Sidky, P.S., Hocking, M.G.: Erosion of ceramic materials by a sand/water slurry jet. Wear 224(2), 183–193 (1999)

    Article  CAS  Google Scholar 

  36. Jeng, C.-A., Huang, J.-L., Lee, S.-Y., Hwang, B.-H.: Erosion damage and surface residual stress of Cr3C2/Al2O3 composite. Mater. Chem. Phys. 78(1), 278–287 (2003)

    Article  Google Scholar 

  37. Choi, H.-J., Han, D.-H., Park, D.-S., Kim, H.-D., Han, B.-D., Lim, D.-S., Kim, I.-S.: Erosion characteristics of silicon nitride ceramics. Ceram. Int. 29(6), 713–719 (2003)

    Article  CAS  Google Scholar 

  38. Deng, J.: Wear behaviors of ceramic nozzles with laminated structure at their entry. Wear 266(1–2), 30–36 (2009)

    Article  CAS  Google Scholar 

  39. ASM International: Atlas of Stress-Strain Curves. ASM International, Materials Park, OH (2002)

Download references

Acknowledgments

Authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), India, under project title “Development of Slurry Erosion Resistant Coatings for Hydroturbines,” File no.: 22(0604)/12/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, H.S., Agrawal, A. & Singh, H. Identifying Erosion Mechanism: A Novel Approach. Tribol Lett 51, 1–7 (2013). https://doi.org/10.1007/s11249-013-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0156-4

Keywords

Navigation