Skip to main content
Log in

Effect of Surface Oxide Layer of Steel on the Tribological Characteristics of Load-bearing Additives for Multiply-Alkylated Cyclopentane Oil under High Vacuum

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribological performance of two types of additives—alkylated phenyl phosphate and lead naphthenate—dissolved in multiply-alkylated cyclopentane was evaluated under a high vacuum using two types of ball-on-disk tribometers: a reciprocating motion tribometer under mild loading conditions and a unidirectional rotating motion tribometer under heavy loading conditions. A ball and a flat disk made of SUS440C stainless steel were used as specimens for both tribometers. The surface of the as-received flat disk specimen was covered with a thick (>40 nm) oxide layer. For the examination of the effect of the surface oxide layer on the tribological performance of the liquid lubricants under a high vacuum, another specimen with an oxide layer (approx. 4 nm thick) was prepared. The alkylated phenyl phosphate additive showed better lubrication performance with the specimen with the thicker oxide layer, but the lead naphthenate additive showed superior performance with the thinner oxide layer specimen. It is also shown that these opposite tribological characteristics are explained by the hard and soft acids and bases principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zaretsky, E.V.: Liquid lubrication in space. Tribol. Int. 23, 75–93 (1990)

    Article  CAS  Google Scholar 

  2. Jones, W.R., Jansen, M.J.: Tribology for space applications. J. Eng. Tribol. 222, 997–1004 (2008)

    Article  CAS  Google Scholar 

  3. Kasai, P.H., Wheeler, P.: Degradation of perfluoropolyethers catalyzed by aluminum chloride. Appl. Surf. Sci. 52, 91–106 (1991)

    Article  CAS  Google Scholar 

  4. Carre, D.J.: The reaction of perfluoropolyalkylether oil with FeF3, AlF3, and AlCl3 at elevated temperatures. ASLE Trans. 28, 40–46 (1985)

    Article  CAS  Google Scholar 

  5. Bialke, B.: Space-flight experience and life test performance of a synthetic hydrocarbon lubricant. In: Proceedings of the Sixth European Space Mechanisms and Tribology Symposium, ESA SP-374, pp. 285–291 (1995)

  6. Carre, D.J., Kalogeras, C.G., Didziulis, S.V., Fleishauer, P.D., Bauer, R.: Recent experience with synthetic hydrocarbon lubricants for spacecraft applications. In: Proceedings of the Sixth European Space Mechanisms and Tribology Symposium, ESA SP-374, pp. 177–183 (1995)

  7. Marchetti, M., Jones Jr, W.R., Street, K.W., Wheeler, D., Dixon, D., Jansen, M., Kimura, H.: Tribological performance of some Pennzane®-based greases for vacuum applications. Tribol. Lett. 12, 209–216 (2002)

    Article  CAS  Google Scholar 

  8. Peterangelo, S.C., Gschwender, L., Snyder Jr, C.E., Jones Jr, W.R., Nguyen, Q., Jansen, M.J.: Improved additives for multiply alkylated cyclopentane-based lubricants. J. Synth. Lubr. 25, 31–41 (2008)

    Article  CAS  Google Scholar 

  9. Rai, A.K., Massey, M.L., Gschwender, L.J., Snyder Jr, C.E., Zabinski, J.S., Sharma, S.K., Jones Jr, W.R.: Enhanced performance of Pennzane® greases for space applications by both additive formulations and smooth hard coatings. Tribol. Trans. 44, 678–684 (2001)

    Article  CAS  Google Scholar 

  10. Lu, R., Mori, S., Kubo, T., Nanao, H.: Effect of sulfur-containing additive on the decomposition of multialkylated cyclopentane oil on the nascent steel surface. Wear 267, 1430–1435 (2009)

    Article  CAS  Google Scholar 

  11. Pearson, R.G.: Hard and soft acids and bases. JACS 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  12. Pearson, R.G.: Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45, 581–587 (1968)

    Article  CAS  Google Scholar 

  13. Philippon, D., De Barros-Bouchet, M.-I., Lerasle, O., Le Mogne, Th., Martin, J.-M.: Experimental simulation of tribochemical reactions between borates esters and steel surface. Tribol. Lett. 41, 73–82 (2011)

    Article  CAS  Google Scholar 

  14. Philippon, D., De Barros-Bouchet, M.-I., Le Mogne, Th., Lerasle, O., Bouffet, A., Martin, J.-M.: Role of nascent metallic surfaces on the tribochemistry of phosphite lubricant additives. Tribol. Int. 44, 684–691 (2011)

    Article  CAS  Google Scholar 

  15. Masuko, M., Kishi, K., Suzuki, A., Obara, S.: The lifetime of boundary lubrication performance of small-quantity-applied liquid lubricants for space mechanisms evaluated with a vacuum reciprocating tribometer. Tribol. Trans. 53, 75–83 (2010)

    Article  CAS  Google Scholar 

  16. Suzuki, A., Shinka, Y., Masuko, M.: Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum. Tribol. Lett. 27, 307–313 (2007)

    Article  CAS  Google Scholar 

  17. Iijima, S., Masuko, M., Suzuki, A., Nogi, T., Obara, S.: Effect of oxide layer of metal surface on lubrication performance of liquid lubricants in high vacuum. J. Jpn. Soc. Tribol. 56, 320–330 (2011). (in Japanese)

    CAS  Google Scholar 

  18. Didziulis, S.V., Fleischauer, P.D.: Chemistry of the extreme-pressure lubricant additive lead naphthenate on steel surfaces. Langmuir 7, 2981–2990 (1991)

    Article  CAS  Google Scholar 

  19. Carre, D.J., Bertrand, P.A., Lince, J.R.: Lead naphthenate tribochemistry under vacuum and gaseous nitrogen test conditions. Tribol. Lett. 16, 207–214 (2004)

    Article  CAS  Google Scholar 

  20. Godfrey, D.: The lubrication mechanism of tricresyl phosphate on steel. ASLE Trans. 8, 1–11 (1965)

    Article  CAS  Google Scholar 

  21. Murase, A., Ohmori, T.: ToF-SIMS analysis of phosphate-type lubricant additives adsorbed on friction surfaces of ferrous materials. Surf. Interface Anal. 31, 93–98 (2001)

    Article  CAS  Google Scholar 

  22. Lu, R., Kobayashi, K., Nanao, H., Mori, S.: Deactivation effect of tricresyl phosphate (TCP) on tribochemical decomposition of hydrocarbon oil on a nascent steel surface. Tribol. Lett. 33, 1–8 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masabumi Masuko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuko, M., Iijima, S., Terawaki, T. et al. Effect of Surface Oxide Layer of Steel on the Tribological Characteristics of Load-bearing Additives for Multiply-Alkylated Cyclopentane Oil under High Vacuum. Tribol Lett 51, 115–125 (2013). https://doi.org/10.1007/s11249-013-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0152-8

Keywords

Navigation