Advertisement

Tribology Letters

, Volume 51, Issue 1, pp 105–113 | Cite as

Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison with Theory

  • Carmine Putignano
  • Thomas Reddyhoff
  • Giuseppe Carbone
  • Daniele Dini
Original Paper

Abstract

We present a detailed experimental investigation on viscoelastic rolling contacts. The tests focus on contact area, penetration and viscoelastic dissipation measurements between a nitrile rubber ball rolling on a glass disc. Each of the measured parameters is shown to be dependent on the rolling speed and normal load and has, therefore, been used to assess the main differences between viscoelastic and linear elastic rolling contacts. Experimental outcomes are compared with numerical predictions of the theory proposed by Carbone and Putignano (J Mech Phys Solid, 2013). A good agreement is found between experiments and theoretical predictions, thus demonstrating the validity of the numerical approach. This has important implications for modelling the behaviour of real viscoelastic materials, whose response is characterised by a wide distribution of relaxation times. The presented methodologies and results can be applied directly or are of relevance to a number of engineering components, such as tires and seals.

Keywords

Viscoelastic solids Rolling friction Contact mechanics 

Notes

Acknowledgments

CP and GC thank the support of the Italian Ministry of Education, University and Research, within the Projects PON01_02238 and PON02_00576_3333604.

References

  1. 1.
    Carbone, G., Putignano, C.: A novel methodology to predict sliding/rolling friction in viscoelastic materials: theory and experiments. J. Mech. Phys. Solid. (2013). doi: 10.1016/j.jmps.2013.03.005
  2. 2.
    Bottiglione, F., Carbone, G., Mangialardi, L., Mantriota, G.: Leakage mechanism in flat seals. J. Appl. Phys. 106(10), 104902 (2009)CrossRefGoogle Scholar
  3. 3.
    O’Boy, D.J., Dowling, A.P.: Tyre/road interaction noise—a 3D viscoelastic multilayer model of a tyre belt. J. Sound Vib. 322(4–5), 829–850 (2009)CrossRefGoogle Scholar
  4. 4.
    Craiem, D., Magin, R.L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7, 013001 (2010)Google Scholar
  5. 5.
    Regeva, O., Vandebrilb, S., Zussmana, E., Clasenb, C.: The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 51(12), 2611–2620 (2010)CrossRefGoogle Scholar
  6. 6.
    Tsujimotoa, T., Uyamaa, H., Kobayashib, S.: Synthesis of high-performance green nanocomposites from renewable natural oils. Polym. Degrad. Stab. 95(8), 1399–1405 (2010)CrossRefGoogle Scholar
  7. 7.
    Hunter, S.C.: The rolling contact of a rigid cylinder with a viscoelastic half space. Trans. ASME Ser. E. J. Appl. Mech. 28, 611–617 (1961)CrossRefGoogle Scholar
  8. 8.
    Harrass, M., Friedrich, K., Almajid, A.A.: Tribological behavior of selected engineering polymers under rolling contact. Tribol. Int. 43, 635–646 (2010)CrossRefGoogle Scholar
  9. 9.
    Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. Ser. A Math. Phys. 274-1356, 21–39 (1963)CrossRefGoogle Scholar
  10. 10.
    Persson, B.N.J.: Rolling friction for hard cylinder and sphere on viscoelastic solid. Eur. Phys. J. E 33, 327–333 (2010)CrossRefGoogle Scholar
  11. 11.
    Panek, C., Kalker, J.J.: Three-dimensional contact of a rigid roller traversing a viscoelastic half space. J. Inst. Math. Appl. 26, 299–313 (1980)CrossRefGoogle Scholar
  12. 12.
    Padovan, J., Paramadilok, O.: Transient and steady state viscoelastic rolling contact. Comput. Struct. 20, 545–553 (1984)CrossRefGoogle Scholar
  13. 13.
    Vollebregt, E.A.H.: User Guide for CONTACT, J.J. Kalker’s Variational Contact Model, Technical Report TR09-03, version 1.18Google Scholar
  14. 14.
    Nackenhorst, U.: The ALE-formulation of bodies in rolling contact theoretical foundations andfinite element approach. Comput. Method Appl. M. 193, 4299–4322 (2004)CrossRefGoogle Scholar
  15. 15.
    Yoneyama, S., Gotoh, J., Takashi, M.: Experimental analysis of rolling contact stresses in a viscoelastic strip. Exp. Mech. 40(2), 203–210 (2000). doi: 10.1007/BF02325047 Google Scholar
  16. 16.
    Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E. Soft Matter 29(3), 275–284 (2009)CrossRefGoogle Scholar
  17. 17.
    Persson, B.N.J.: Rubber friction: role of the flash temperature. J. Phys. Condens. Matter 18(32), 7789–7823 (2006)CrossRefGoogle Scholar
  18. 18.
    Goriacheva, G.: Contact problem of rolling of a viscoelastic cylinder on a base of the same material. J. Appl. Math. Mech. 37(5), 925–933 (1973). doi: 10.1016/0021-8928(73)90017-8 Google Scholar
  19. 19.
    Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1982)Google Scholar
  20. 20.
    Padovan, J.: Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-I theory. Comput. Struct. 27(2), 249–257 (1987)CrossRefGoogle Scholar
  21. 21.
    Padovan, J., Kazempour, A., Tabaddor, F., Brockman, B.: Alternative formulations of rolling contact problems. Finite Elem. Anal. Des. 11, 275–284 (1992)CrossRefGoogle Scholar
  22. 22.
    Nasdala, L., Kaliske, M., Becker, A., Rothert, H.: An efficient viscoelastic formulation for steady-state rolling structures. Comput. Mech. 22, 395–403 (1998)CrossRefGoogle Scholar
  23. 23.
    Le Tallec, P., Rahler, C.: Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. Int. J. Numer. Meth. Eng. 37, 1159–1186 (1994)CrossRefGoogle Scholar
  24. 24.
    Halaunbrenner, J., Kubisz, A.: ASLE-ASME Lubrication Conference Paper No. 67-Lub-25 , Chicago (1967)Google Scholar
  25. 25.
    Johnson, K.L.J.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  26. 26.
    Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol Lett. doi: 10.1007/s11249-011-9870-y
  27. 27.
    Lorenz, B., Persson, B.N.J., Dieluweit, S., Tada, T.: Rubber friction: comparison of theory with experiment. Eur. Phys. J. E. 34, 129 (2011). doi: 10.1140/epje/i2011-11129-1 Google Scholar
  28. 28.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a dugdale model. J. Colloid Interf. Sci. 150, 1 (1992)CrossRefGoogle Scholar
  29. 29.
    Felhõs, D., Xul, D., Schlarb, A.K., Váradi, K., Goda, T.: Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction. Express Polym. Lett. 2(3), 157–164 (2008)CrossRefGoogle Scholar
  30. 30.
    Olaru, D.N., Stamate, C., Prisacaru, G.: Rolling friction in a micro tribosystem. Tribol. Lett. 35, 205–210 (2009)CrossRefGoogle Scholar
  31. 31.
    Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)Google Scholar
  32. 32.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solid. Struct. 49(2), 338–343 (2012). doi: 10.1016/j.ijsolstr.2011.10.009 CrossRefGoogle Scholar
  33. 33.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contact: a numerical investigation. J. Mech. Phys. Solid. 60(5), 973–982 (2012)CrossRefGoogle Scholar
  34. 34.
    Carbone, G., Mangialardi, L.: Analysis of adhesive contact of confined layers by using a Green’s function approach. J. Mech. Phys. Solid. 56(2), 684–706 (2008)CrossRefGoogle Scholar
  35. 35.
    Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E. Soft Matter 30(1), 65–74 (2009)CrossRefGoogle Scholar
  36. 36.
    Carbone, G., Mangialardi, L.: Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J. Mech. Phys. Solids 52(6), 1267–1287 (2004)CrossRefGoogle Scholar
  37. 37.
    Scaraggi, M., Putignano, C., Carbone, G.: Elastic contact of rough surfaces: a simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297, 1–2, 5, 811–817 (2013)Google Scholar
  38. 38.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A multiscale analysis of elastic contacts and percolation threshold for numerically generated and real rough surfaces. Tribol. Int. 64, 148–154 (2013). doi: 10.1016/j.triboint.2013.03.010 CrossRefGoogle Scholar
  39. 39.
    de Vicente, J., Stokes, J.R., Spikes, H.A.: Rolling and sliding friction in compliant, lubricated contact. Proc. IMechE, Part J: J. Eng. Tribol. 220, 55–63 (2006)Google Scholar
  40. 40.
    Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)CrossRefGoogle Scholar
  41. 41.
    Michael, K.: Advanced Topics in Characterization of Composites. Trafford Publishing, Bloomington, IN (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carmine Putignano
    • 1
    • 2
  • Thomas Reddyhoff
    • 2
  • Giuseppe Carbone
    • 1
  • Daniele Dini
    • 2
  1. 1.TriboLAB-Dipartimento di Meccanica, Matematica e ManagementPolitecnico di BariBariItaly
  2. 2.Department of Mechanical EngineeringImperial College LondonLondonUK

Personalised recommendations