Skip to main content
Log in

Investigation on the Molecular Shear-Induced Organization in a Molecularly Thin Film of N-hexadecane

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The frictional properties of a thin hexadecane film confined between two atomically smooth surfaces of mica were studied using the surface forces apparatus equipped with a 3D actuator–sensor attachment specially designed to investigate static and dynamic forces in three orthogonal directions simultaneously. The use of this attachment allows the relative alignment of the reciprocal sliding motion to be changed by an angle of 90° while maintaining the film under the same confinement conditions. The effects of the commensurability of the confining mica surfaces as well as the relative sliding direction on the frictional behavior of the hexadecane film were determined for different temperatures (18–29 °C) and sliding velocities (4 nm/s to 4 μm/s). The confined hexadecane film exhibited smooth sliding friction whose amplitude increased with the commensuration of the surfaces. A progressive evolution in the kinetic friction force toward a steady-state value was observed over reciprocal sliding motion for given experimental conditions of applied load, sliding velocity and environmental temperature. This friction evolution shows to be dependent on the sliding history of the film and could result from a partial molecular ordering, occurring during shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

β and γ :

Mica optical axis

d :

Surface separation distance

F :

Friction force

F k :

Kinetic friction force

F k,2 :

Kinetic friction force measured during the second oscillation

F st :

Stiction force

F st,2 :

Stiction force measured during the second oscillation

L :

Normal load

T :

Temperature

T m :

Melting temperature

θ :

Surface lattice twist angle

v :

Sliding velocity

ω :

Angle between beta optical axis of the lower surface and the shearing direction

References

  1. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67(19), 2642–2645 (1991)

    Article  CAS  Google Scholar 

  2. Ko, J.S., Gellman, A.J.: Friction anisotropy at Ni(100)/Ni(100) interfaces. Langmuir 16(22), 8343–8351 (2000)

    Article  CAS  Google Scholar 

  3. Ruths, M., Granick, S.: Influence of alignment of crystalline confining surfaces on static forces and shear in a liquid crystal, 4′-n-pentyl-4-cyanobiphenyl. Langmuir 16(22), 8368–8376 (2000)

    Article  CAS  Google Scholar 

  4. Overney, R.M., Takano, H., Fujihira, M., Paulus, W., Ringsdorf, H.: Anisotropy in friction and molecular stick–slip motion. Phys. Rev. Lett. 72(22), 3546–3549 (1994)

    Article  CAS  Google Scholar 

  5. Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309(5739), 1354–1356 (2005)

    Article  CAS  Google Scholar 

  6. So, E., Demirel, M.C., Wahl, K.J.: Mechanical anisotropy of nanostructured parylene films during sliding contact. J. Phys. D: Appl. Phys. 43(4), 045403 (2010)

    Article  Google Scholar 

  7. Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solid-like transitions of molecularly thin-films under shear. J. Chem. Phys. 93(3), 1895–1906 (1990)

    Article  CAS  Google Scholar 

  8. Thompson, P.A., Robbins, M.O.: Origin of stick–slip motion in boundary lubrication. Science 250, 792–794 (1990)

    Article  CAS  Google Scholar 

  9. Yoshizawa, H., Chen, Y.-L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  CAS  Google Scholar 

  10. Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67(6), 066110 (2003)

    Article  CAS  Google Scholar 

  11. Kumacheva, E., Klein, J.: Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J. Chem. Phys. 108(16), 7010–7022 (1998)

    Article  CAS  Google Scholar 

  12. Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2. Stick–slip friction of spherical and chain. J. Phys. Chem. 97, 11300–11313 (1993)

    Article  CAS  Google Scholar 

  13. Stevens, M.J., Mondello, M., Grest, G.S., Cui, S.T., Cochran, H.D., Cummings, P.T.: Comparison of shear flow of hexadecane in a confined geometry and in bulk. J. Chem. Phys. 106, 7303–7314 (1997)

    Article  CAS  Google Scholar 

  14. Gupta, S.A., Cochran, H.D., Cummings, P.T.: Shear behavior of squalane and tetracosane under extreme confinement. 2. Confined film structure. J. Chem. Phys. 107(23), 10327–10334 (1997)

    Article  CAS  Google Scholar 

  15. Jabbarzadeh, A., Harrowell, P., Tanner, R.: The structural origin of the complex rheology in thin dodecane films: three routes to low friction. Tribol. Int. 40(10–12), 1574–1586 (2007)

    Article  CAS  Google Scholar 

  16. Drummond, C., Alcantar, N., Israelachvili, J.: Shear alignment of confined hydrocarbon liquid films. Phys. Rev. E 66(1), 011705 (2002)

    Google Scholar 

  17. Akbulut, M., Chen, N.H., Maeda, N., Israelachvili, J., Grunewald, T., Helm, C.A.: Crystallization in thin liquid films induced by shear. J. Phys. Chem. B 109(25), 12509–12514 (2005)

    Article  CAS  Google Scholar 

  18. Alig, A.R.G., Gourdon, D., Israelachvili, J.: Properties of confined and sheared rhodamine B films studied by SFA−FECO spectroscopy. J. Phys. Chem. B 111(1), 95–106 (2007)

    Article  Google Scholar 

  19. Kristiansen, K., Banquy, X., Zeng, H.B., Charrault, E., Giasson, S., Israelachvili, J.: Measurements of anisotropic (off-axis) friction-induced motion. Adv. Mater. 24(38), 5236–5241 (2012)

    Article  CAS  Google Scholar 

  20. Christenson, H.K., Gruen, D.W.R., Horn, R.G., Israelachvili, J.N.: Structuring in liquid alkanes between solid surfaces: force measurements and mean-field theory. J. Chem. Phys. 87, 1834–1841 (1987)

    Article  CAS  Google Scholar 

  21. Israelachvili, J.N.: Thin film studies using multiple-beam interferometry. J. Colloid Interface Sci. 44(2), 259–271 (1973)

    Article  CAS  Google Scholar 

  22. Israelachvili, J., Min, Y., Akbulut, M., Alig, A., Carver, G., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K.: Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010)

    Article  Google Scholar 

  23. Artsyukhovich, A., Broekman, L.D., Salmeron, M.: Friction of the liquid crystal 8CB as probed by the surface forces apparatus. Langmuir 15(6), 2217–2223 (1999)

    Article  CAS  Google Scholar 

  24. Israelachvili, J.N., Kott, S.J., Gee, M.L., Witten, T.A.: Forces between mica surfaces across hydrocarbon liquids: effects of branching and polydispersity. Macromolecules 22(11), 4247–4253 (1989)

    Article  CAS  Google Scholar 

  25. Bureau, L.: Rate effects on layering of a confined linear alkane. Phys. Rev. Lett. 99(22), 225503 (2007)

    Article  Google Scholar 

  26. Jabbarzadeh, A., Harrowell, P., Tanner, R.: Very low friction state of a dodecane film confined between mica surfaces. Phys. Rev. Lett. 94(12), 126103 (2005)

    Article  CAS  Google Scholar 

  27. Yamada, S.: Structural aging and stiction dynamics in confined liquid films. J. Chem. Phys. 131(18), 184708 (2009)

    Article  Google Scholar 

  28. Cui, S.T., Cummings, P.T., Cochran, H.D.: Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. J. Chem. Phys. 114(16), 7189–7195 (2001)

    Article  CAS  Google Scholar 

  29. Jabbarzadeh, A., Harrowell, P., Tanner, R.: Crystal bridge formation marks the transition to rigidity in a thin lubrication film. Phys. Rev. Lett. 96(20), 206102 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SG and EC thank the Fonds de Recherches sur la Nature et les Technologies (FQRNT) Québec, the Natural Sciences and Engineering Research Council (NSERC) Canada, and the Centre for self-assembled chemical structures (CSACS) Montreal, for the financial support. JNI, KK and XB would like to thank the US Department of Energy, Materials Sciences Division for supporting the design of the experiments and the interpretation of the experimental data under Award No. DE-FG02-87ER-45331. XB thanks the Santa Barbara Foundation for their financial support through the Otis Williams Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Giasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charrault, E., Banquy, X., Kristiansen, K. et al. Investigation on the Molecular Shear-Induced Organization in a Molecularly Thin Film of N-hexadecane. Tribol Lett 50, 421–430 (2013). https://doi.org/10.1007/s11249-013-0138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0138-6

Keywords

Navigation