Skip to main content
Log in

Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

An alternative technique aimed at facilitating the calculation of frictional power dissipation in reciprocating dry sliding is presented. The proposed technique can be employed for the prediction of wear in circumstances where the direct measurement of power dissipation is encumbered by practical limitations. Experimental tests are carried out to investigate the relationship between the system’s wear rate, power dissipation, and thermal response. A convenient technique is also proposed to estimate the average contact temperature in a reciprocating sliding contact. The predicted temperatures agree with the experimental measurements. It is also shown how the predicted temperatures can be used for the estimation of wear under reciprocating dry sliding configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Total compliance of the test setup (μm N−1)

\( \bar{E}_{d} \) :

Average cyclic frictional energy dissipation (J)

\( \dot{d}(\tau ) \) :

Displacement rate for the upper carriage (m s)

f :

Frequency of oscillation (Hz)

H :

Hardness of the material (MPa)

h f :

Forced convection heat coefficient (W m−2 K−1)

h n :

Natural convection heat coefficient (W m−2 K−1)

K :

Archard’s wear coefficient

\( \bar{K} \) :

Modified Archard’s wear coefficient

k :

Thermal conductivity (W m−1 K−1)

l :

Relative reciprocating sliding amplitude (m)

N :

Normal contact force (N)

n :

Number of oscillatory sliding cycles

p :

Contact pressure (MPa)

P av :

Average power dissipation during the steady state (W)

Q :

Friction force (N)

q :

Frictional heat flux (W m−2)

q s :

Scaled frictional heat flux (W m−2)

q 0 :

Maximum value of the frictional heat flux (W m−2)

qs 0 :

Maximum value of the scaled frictional heat flux (W m−2)

r :

Radius of the pin (m)

t :

Time (s)

t f :

The time at the end of each test (s)

t s :

The time until beginning of the steady state (s)

T :

Temperature (°C)

T :

Ambient temperature (°C)

v :

Relative oscillatory sliding speed (m s−1)

W :

Wear volume in Archard’s equation (m3)

w n :

Wear volume after n number of oscillatory cycles (m3)

\( \dot{w}_{\text{av}} \) :

Average wear rate during the steady state (m3 s−1)

X :

Sliding distance (m)

X n :

Sliding distance after n number of oscillatory cycles (m)

γ :

Power dissipation-wear factor (mm3 J−1)

δ e :

Displacement measured by the optical encoder (m)

δ r :

Relative sliding displacement between the contact pair (m)

μ :

Friction coefficient

\( \bar{\mu } \) :

Average steady-state friction coefficient

References

  1. Fouvry, S., Kapsa, P.: An energy description of hard coating wear mechanisms. Surf Coat Tech 138(2–3), 141–148 (2001)

    Article  CAS  Google Scholar 

  2. Fouvry, S., Liskiewicz, T., Kapsa, P., Hannel, S., Sauger, E.: An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear 255, 287–298 (2003). doi:10.1016/S0043-1648(03)00117-0

    Article  CAS  Google Scholar 

  3. Leonard, B.D., Sadeghi, F., Shinde, S., Mittelbach, M.: A numerical and experimental investigation of fretting wear and a new procedure for fretting wear maps. Tribol Trans 55(3), 313–324 (2012). doi:10.1080/10402004.2012.654598

    Article  CAS  Google Scholar 

  4. Leonard, B.D., Patil, P., Slack, T.S., Sadeghi, F., Shinde, S., Mittelbach, M.: Fretting wear modeling of coated and uncoated surfaces using the combined finite-discrete element method. J. Tribol. T ASME. 133(2) (2011). doi:10.1115/1.4003482

  5. McColl, I.R., Ding, J., Leen, S.B.: Finite element simulation and experimental validation of fretting wear. Wear 256(11–12), 1114–1127 (2004). doi:10.1016/j.wear.2003.07.001

    Article  CAS  Google Scholar 

  6. Nowell, D.: Simulation of fretting wear in half-plane geometries-part II: analysis of the transient wear problem using quadratic programming. J. Tribol. T ASME. 132(2) (2010). doi:10.1115/1.4000733

  7. Matveesky, R.M.: The critical temperature of oil with point and line contact machines. Trans Am Soc Lubr Eng 87, 754 (1965)

    Google Scholar 

  8. Fouvry, S., Kapsa, P., Zahouani, H., Vincent, L.: Wear analysis in fretting of hard coatings through a dissipated energy concept. Wear 203, 393–403 (1997)

    Article  Google Scholar 

  9. Fouvry, S., Paulin, C., Liskiewicz, T.: Application of an energy wear approach to quantify fretting contact durability: introduction of a wear energy capacity concept. Tribol Int 40(10–12), 1428–1440 (2007). doi:10.1016/j.triboint.2007.02.011

    Article  CAS  Google Scholar 

  10. Huq, M.Z., Celis, J.P.: Reproducibility of friction and wear results in ball-on-disc unidirectional sliding tests of TiN-alumina pairings. Wear 212(2), 151–159 (1997)

    Article  CAS  Google Scholar 

  11. Huq, M.Z., Celis, J.P.: Fretting wear of multilayered (Ti, Al)N/TiN coatings in air of different relative humidity. Wear 225, 53–64 (1999)

    Article  Google Scholar 

  12. Huq, M.Z., Celis, J.P.: Expressing wear rate in sliding contacts based on dissipated energy. Wear 252(5–6), 375–383 (2002)

    Article  CAS  Google Scholar 

  13. Kim, K., Korsunsky, A.M.: Dissipated energy and fretting damage in CoCrAlY-MoS2 coatings. Tribol Int 43(3), 676–684 (2010). doi:10.1016/j.triboint.2009.10.007

    Article  CAS  Google Scholar 

  14. Lee, H., Mall, S., Sanders, J.H., Sharma, S.K.: Wear analysis of Cu–Al coating on Ti-6Al-4 V substrate under fretting condition. Tribol Lett 19(3), 239–248 (2005). doi:10.1007/s11249-005-6151-7

    Article  CAS  Google Scholar 

  15. Liskiewicz, T., Fouvry, S.: Development of a friction energy capacity approach to predict the surface coating endurance under complex oscillating sliding conditions. Tribol Int 38(1), 69–79 (2005). doi:10.1016/j.triboint.2004.06.002

    Article  CAS  Google Scholar 

  16. Liskiewicz, T., Fouvry, S., Wendler, B.: Impact of variable loading conditions on fretting wear. Surf Coat Tech 163, 465–471 (2003)

    Article  Google Scholar 

  17. Mary, C., Fouvry, S.: Numerical prediction of fretting contact durability using energy wear approach: optimisation of finite-element model. Wear 263, 444–450 (2007). doi:10.1016/j.wear.2007.01.116

    Article  CAS  Google Scholar 

  18. Merhej, R., Fouvry, S.: Contact size effect on fretting wear behaviour: application to an AISI 52100/AISI 52100 interface. Lubr Sci 21(3), 83–102 (2009). doi:10.1002/ls.74

    Article  Google Scholar 

  19. Mohrbacher, H., Blanpain, B., Celis, J.P., Roos, J.R.: Low-amplitude oscillating sliding wear on chemically vapor-deposited diamond coatings. Diam Relat Mater 2(5–7), 879–884 (1993)

    Article  CAS  Google Scholar 

  20. Mohrbacher, H., Blanpain, B., Celis, J.P., Roos, J.R., Stals, L., Vanstappen, M.: Oxidational wear of tin coatings on tool steel and nitrided tool steel in unlubricated fretting. Wear 188(1–2), 130–137 (1995)

    Article  CAS  Google Scholar 

  21. Paulin, C., Fouvry, S., Deyber, S.: Wear kinetics of Ti-6Al-4 V under constant and variable fretting sliding conditions. Wear 259(1–6), 292–299 (2005). doi:10.1016/j.wear.2005.01.034

    Article  CAS  Google Scholar 

  22. Ramalho, A., Miranda, J.C.: The relationship between wear and dissipated energy in sliding systems. Wear 260(4–5), 361–367 (2006). doi:10.1016/j.wear.2005.02.121

    Article  CAS  Google Scholar 

  23. Rybiak, R., Fouvry, S., Bonnet, B.: Fretting wear of stainless steels under variable temperature conditions: introduction of a ‘composite’ wear law. Wear 268(3–4), 413–423 (2010). doi:10.1016/j.wear.2009.08.029

    Article  CAS  Google Scholar 

  24. Rybiak, R., Fouvry, S., Liskiewicz, T., Wendler, B.: Fretting wear of a TiNPVD coating under variable relative humidity conditions—development of a ‘composite’ wear law. Surf Coat Tech 202(9), 1753–1763 (2008). doi:10.1016/j.surfcoat.2007.07.103

    Article  CAS  Google Scholar 

  25. Shakhvorostov, D., Pohlmann, K., Scherge, M.: An energetic approach to friction, wear and temperature. Wear 257(1–2), 124–130 (2004). doi:10.1016/j.wear.2003.10.010

    Article  CAS  Google Scholar 

  26. Zhang, X.L., Lauwerens, W., Stals, L., He, J.W., Celis, J.P.: Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy. J Mater Res 16(12), 3567–3574 (2001)

    Article  CAS  Google Scholar 

  27. Aghdam, A.B., Khonsari, M.M.: On the correlation between wear and entropy in dry sliding contact. Wear 270(11–12), 781–790 (2011). doi:10.1016/j.wear.2011.01.034

    Article  CAS  Google Scholar 

  28. Doelling, K.L., Ling, F.F., Bryant, M.D., Heilman, B.P.: An experimental study of the correlation between wear and entropy flow in machinery components. J Appl Phys 88(5), 2999–3003 (2000). doi:10.1063/1.1287778

    Article  CAS  Google Scholar 

  29. Bryant, M.D., Khonsari, M.M., Ling, F.F.: On the thermodynamics of degradation. P R Soc a Math Phy 464(2096), 2001–2014 (2008). doi:10.1098/rspa.2007.0371

    Article  CAS  Google Scholar 

  30. Ito, S., Shima, M., Jibiki, T., Akita, H.: The relationship between AE and dissipation energy for fretting wear. Tribol Int 42(2), 236–242 (2009). doi:10.1016/j.triboint.2008.06.010

    Article  CAS  Google Scholar 

  31. Matsuoka, K., Forrest, D., Tse, M.K.: Online wear monitoring using acoustic-emission. Wear 162, 605–610 (1993)

    Article  Google Scholar 

  32. Sun, J., Wood, R.J.K., Wang, L., Care, I., Powrie, H.E.G.: Wear monitoring of bearing steel using electrostatic and acoustic emission techniques. Wear 259, 1482–1489 (2005). doi:10.1016/j.wear.2005.02.021

    Article  CAS  Google Scholar 

  33. Kennedy, F.E.: Surface temperatures in sliding systems—a finite-element analysis. J Lubric Technol 103(1), 90–96 (1981)

    Google Scholar 

  34. Majcherczak, D., Dufrenoy, P., Berthier, Y.: Tribological, thermal and mechanical coupling aspects of the dry sliding contact. Tribol Int 40(5), 834–843 (2007). doi:10.1016/j.triboint.2006.08.004

    Article  CAS  Google Scholar 

  35. Zmitrowicz, A.: Constitutive models for anisotropic frictional heat. Int J Heat Mass Transf 38(3), 563–574 (1995)

    Article  CAS  Google Scholar 

  36. Amiri, M., Khonsari, M.M.: On the thermodynamics of friction and wear-a review. Entropy 12(5), 1021–1049 (2010). doi:10.3390/E12051021

    Article  CAS  Google Scholar 

  37. Li, W., Wang, Y., Yan, M.F.: Wear rate, frictional temperature, and energy consumption of steel 52100 with different microstructures during sliding. J Mater Sci 40(21), 5635–5640 (2005). doi:10.1007/s10853-005-1508-8

    Article  CAS  Google Scholar 

  38. Blok, H.: Theoretical study of temperature rise at surfaces of actual contact under oiliness conditions. In: Proceedings of the institute of mechanical engineers general discussion of lubrication 2, Institution of Mechanical Engineers, London, pp. 222–235 (1937)

  39. Jaeger, J.C.: Moving sources of heat and the temperature of sliding contacts. Proc R Soc N S W 76, 203–224 (1942)

    Google Scholar 

  40. Tian, X., Kennedy, F.E.: Prediction and measurement of surface temperature rise at the contact interface for oscillatory sliding. In: Proceedings of the institute of mechanical engineers, vol. 209 (1995)

  41. Tian, X.F., Kennedy, F.E.: Contact surface-temperature models for finite bodies in dry and boundary lubricated sliding. J Tribol 115(3), 411–418 (1993)

    Article  CAS  Google Scholar 

  42. Greenwood, J.A., Allistongreiner, A.F.: Surface temperatures in a fretting contact. Wear 155(2), 269–275 (1992)

    Article  Google Scholar 

  43. Documentation for ANSYS: element library, release 11.0, SAS IP Inc. (2007)

  44. Abdel-Aal, H.A.: Division of frictional heat: the dependence on sliding parameters. Int Commun Heat Mass Transf 26(2), 279–288 (1999). doi:10.1016/S0735-1933(99)00014-7

    Article  Google Scholar 

  45. Attia, M.H.: Partition of frictional heat in fretting and tribo-systems with small oscillatory motion. Manuf Sci Eng 2–2(2–3), 1239–1248 (1995)

    Google Scholar 

  46. Laraqi, N., Alilat, N., de Maria, J.M.G., Bairi, A.: Temperature and division of heat in a pin-on-disc frictional device-exact analytical solution. Wear 266(7–8), 765–770 (2009). doi:10.1016/j.wear.2008.08.016

    Article  CAS  Google Scholar 

  47. Bansal, D.G., Streator, J.L.: A method for obtaining the temperature distribution at the interface of sliding bodies. Wear 266(7–8), 721–732 (2009). doi:10.1016/j.wear.2008.08.019

    Article  CAS  Google Scholar 

  48. Bosman, R., de Rooij, M.B.: Transient thermal effects and heat partition in sliding contacts. J. Tribol. T ASME. 132(2) (2010). doi:10.1115/1.4000693

  49. Komanduri, R., Hou, Z.B.: Analysis of heat partition and temperature distribution in sliding systems. Wear 251, 925–938 (2001). doi:10.1016/S0043-1648(01)00707-4

    Article  Google Scholar 

  50. Takabi, J., Khonsari, M.M.: Experimental testing and thermal analysis of ball bearings. Int J Tribol 60, 93–103 (2013). doi:10.1016/j.triboint.2012.10.009

    Article  Google Scholar 

  51. Incorpera, F.P., DeWitt, D.P.: Fundamentals of heat and mass transfer, 5 ed. Wiley, New York (2001)

  52. Cverna, F.: ASM ready reference. Thermal properties of metals. ASM International, Materials Park, Ohio (2002)

    Google Scholar 

  53. ASM handbook online, vol. 1 & 2, ASM International, (2010)

  54. Lee, H., Mall, S., Murray, K.N.: Fretting wear behavior of cu-al coating on Ti-6Al-4 V substrate under dry and wet (lubricated) contact condition. Tribol Lett 28(1), 19–25 (2007). doi:10.1007/s11249-007-9243-8

    Article  Google Scholar 

  55. Varenberg, M., Halperin, G., Etsion, I.: Different aspects of the role of wear debris in fretting wear. Wear 252(11–12), 902–910 (2002)

    Article  CAS  Google Scholar 

  56. Zhang, X.L., Prakash, B., Lauwerens, W., Zhu, X.D., He, J.W., Celis, J.P.: Low-friction MoSx coatings resistant to wear in ambient air of low and high relative humidity. Tribol Lett 14(2), 131–135 (2003). doi:10.1023/A:1021760405423

    Article  Google Scholar 

  57. Godet, M.: The 3rd-body approach—a mechanical view of wear. Wear 100(1–3), 437–452 (1984). doi:10.1016/0043-1648(84)90025-5

    Article  Google Scholar 

  58. Godet, M., Play, D., Berthe, D.: An attempt to provide a unified treatment of tribology through load carrying-capacity, transport, and continuum-mechanics. J Lubr Technol 102(2), 153–164 (1980)

    Article  Google Scholar 

  59. Mesgarnejad, A., Khonsari, M.M.: On the tribological behavior of MoS2-coated thrust ball bearings operating under oscillating motion. Wear 269(7–8), 547–556 (2010). doi:10.1016/j.wear.2010.05.010

    Article  CAS  Google Scholar 

  60. Beheshti, A., Khonsari, M.M.: A thermodynamic approach for prediction of wear coefficient under unlubricated sliding condition. Tribol Lett 38(3), 347–354 (2010). doi:10.1007/s11249-010-9614-4

    Article  CAS  Google Scholar 

  61. Rabinowicz, E.: Friction and wear of materials, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  62. Mansouri, M., Khonsari, M.M.: Surface temperature in oscillating sliding interfaces. J Tribol 127(1), 1–9 (2005). doi:10.1115/1.1828065

    Article  Google Scholar 

  63. Wen, J., Khonsari, M.M.: Transient temperature involving oscillatory heat source with application in fretting contact. J Tribol 129(3), 517–527 (2007). doi:10.1115/1.2736435

    Article  Google Scholar 

  64. Wen, J., Khonsari, M.M.: Analytical formulation for the temperature profile by Duhamel’s theorem in bodies subjected to an oscillatory heat source. J Heat Transf 129(2), 236–240 (2007). doi:10.1115/1.2424236

    Article  Google Scholar 

  65. Blau, P.J.: Mechanisms for transitional friction and wear behavior of sliding metals. Wear 72(1), 55–66 (1981). doi:10.1016/0043-1648(81)90283-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the assistance of Metal Improvement Company at Lafayette, LA and Mr. D. Winder in particular for heat treatment of the steel specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khonsari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghdam, A.B., Khonsari, M.M. Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise. Tribol Lett 50, 365–378 (2013). https://doi.org/10.1007/s11249-013-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0133-y

Keywords

Navigation