Advertisement

Tribology Letters

, Volume 50, Issue 3, pp 313–322 | Cite as

Friction and Wear Behaviors of Ni-based Composites Containing Graphite/Ag2MoO4 Lubricants

  • Eryong Liu
  • Yimin Gao
  • Junhong Jia
  • Yaping Bai
Original Paper

Abstract

In order to improve the tribological properties of Ni-based composites, novel adaptive Ni-based composites containing multiple lubricants were prepared via a mechanical alloying and hot-press sintering technique. The phase constituents and microstructure of the composites were characterized and the tribological properties were evaluated from room temperature to 700 °C. The results showed that the Ag2MoO4 phase decomposed and new phases of Mo2C, Ag, and MoO3 formed in the sintered composites, which can be attributed to the solid state reaction of silver molybdate lubricant during the sintering process. The wear test results indicated that the Ni-based composites containing graphite and silver molybdate lubricants exhibited superior tribological properties at ambient and high temperatures. Subsequently, the Raman results demonstrated that the composition of the tribo-layers on the worn surface of the Ni-based composites was varied with increasing temperature. Combined with the wear test results, it can be proposed that the improvement of tribological properties is due to the synergistic lubricating action of silver molybdate, iron oxide, and nickel oxide. Furthermore, Raman results of the composite containing silver molybdate and silver/molybdenum trioxide lubricants revealed that the silver molybdate lubricant can reproduce easily by the direct reaction between molybdenum trioxide and silver in the agglomerate state.

Keywords

Ni-based composites Multiple lubricants Synergistic lubricating action Tribological property Silver molybdate 

Notes

Acknowledgments

The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 50972148, 51175490) and the “Hundred Talents Program” of the Chinese Academy of Sciences (Grant No. KGCX2-YW-804).

References

  1. 1.
    Aouadi, S.M., Paudel, Y., Luster, B., Stadler, S., Kohli, P., Muratore, C., Hager, C., Voevodin, A.A.: Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications. Tribol. Lett. 29, 95–103 (2008)CrossRefGoogle Scholar
  2. 2.
    Aouadi, S., Paudel, Y., Simonson, W., Ge, Q., Kohli, P., Muratore, C., Voevodin, A.: Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surf. Coat. Technol. 203, 1304–1309 (2009)CrossRefGoogle Scholar
  3. 3.
    Baker, C.C., Chromik, R.R., Wahl, K.J., Hu, J.J., Voevodin, A.A.: Preparation of chameleon coatings for space and ambient environments. Thin Solid Films 515, 6737–6743 (2007)CrossRefGoogle Scholar
  4. 4.
    Blochl, P.E.: Projector augmnted-wave method. Phys. Rev. B 50, 17953–17979 (1994)CrossRefGoogle Scholar
  5. 5.
    Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180, 76–84 (2004)CrossRefGoogle Scholar
  6. 6.
    Blanchet, T.A., Kim, J.H., Calabrese, S.J., Dellacorte, C.: Thrust-washer evaluation of self-lubricating PS304 composite coatings in high temperature sliding contact. Tribol. Trans. 45, 491–498 (2002)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Koch, J., Mazumder, J., Shibata, K.: Processing, microstructure, and properties of laser-clad Ni alloy FP-5 on Al alloy AA333. Metall. Mater. Trans. B 25, 425–434 (1994)CrossRefGoogle Scholar
  8. 8.
    Bhansali, K.: Adhesive wear of nickel-and cobalt-base alloys. Wear 60, 95–110 (1980)CrossRefGoogle Scholar
  9. 9.
    Dangsheng, X.: Lubrication behavior of Ni–Cr-based alloys containing MoS2 at high temperature. Wear 251, 1094–1099 (2001)CrossRefGoogle Scholar
  10. 10.
    Lu, J., Yang, S., Wang, J., Xue, Q.: Mechanical and tribological properties of Ni-based alloy/CeF3/graphite high temperature self-lubricating composites. Wear 249, 1070–1076 (2001)CrossRefGoogle Scholar
  11. 11.
    Li, J.L., Xiong, D.S.: Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection. Wear 265, 533–539 (2008)CrossRefGoogle Scholar
  12. 12.
    Leng, Y., Gu, J., Cao, W., Zhang, T.Y.: Influences of density and flake size on the mechanical properties of flexible graphite. Carbon 36, 875–881 (1998)CrossRefGoogle Scholar
  13. 13.
    Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRefGoogle Scholar
  14. 14.
    Bares, J., Argibay, N., Dickrell, P., Bourne, G., Burris, D., Ziegert, J., Sawyer, W.: In situ graphite lubrication of metallic sliding electrical contacts. Wear 267, 1462–1469 (2009)CrossRefGoogle Scholar
  15. 15.
    Clauss, F.J.: Solid Lubricants and Self-Lubricating Solids. Academic Press, New York (1972)Google Scholar
  16. 16.
    Basnyat, P., Luster, B., Kertzman, Z., Stadler, S., Kohli, P., Aouadi, S., Xu, J., Mishra, S.R., Eryilmaz, O.L., Erdemir, A.: Mechanical and tribological properties of CrAlN-Ag self-lubricating films. Surf. Coat. Technol. 202, 1011–1016 (2007)CrossRefGoogle Scholar
  17. 17.
    Basnyat, R., Luster, B., Muratore, C., Voevodin, A.A., Haasch, R., Zakeri, R., Kohli, P., Aouadi, S.M.: Surface texturing for adaptive solid lubrication. Surf. Coat. Technol. 203, 73–79 (2008)CrossRefGoogle Scholar
  18. 18.
    Tyagi, R., Xiong, D.S., Li, J., Dai, J.: Elevated temperature tribological behavior of Ni based composites containing nano-silver and hBN. Wear 269, 884–890 (2010)CrossRefGoogle Scholar
  19. 19.
    Aouadi, S.M., Bohnhoff, A., Sodergren, M., Mihut, D., Rohde, S.L., Xu, J., Mishra, S.R.: Tribological investigation of zirconium nitride/silver nanocomposite structures. Surf. Coat. Technol. 201, 418–422 (2006)CrossRefGoogle Scholar
  20. 20.
    Baker, C.C., Hu, J.J., Voevodin, A.A.: Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments. Surf. Coat. Technol. 201, 4224–4229 (2006)CrossRefGoogle Scholar
  21. 21.
    Liu, E., Wang, W., Gao, Y., Jia, J.: Tribological properties of adaptive Ni-Based composites with addition of lubricious Ag2MoO4 at elevated temperatures. Tribol. Lett. 47, 21–30 (2012)CrossRefGoogle Scholar
  22. 22.
    Gulbinski, W., Suszko, T.: Thin films of Mo2N/Ag nanocomposite—the structure, mechanical and tribological properties. Surf. Coat. Technol. 201, 1469–1476 (2006)CrossRefGoogle Scholar
  23. 23.
    Liu, E., Gao, Y., Wang, W., Zhang, X., Wang, X., Yi, G., Jia, J.: Effect of the synergistic action on tribological characteristics of Ni-based composites containing multiple-lubricants. Tribol. Lett. 47, 399–408 (2012)CrossRefGoogle Scholar
  24. 24.
    Li, J., Xiong, D.: Tribological behavior of graphite-containing nickel-based composite as function of temperature, load and counterface. Wear 266, 360–367 (2009)CrossRefGoogle Scholar
  25. 25.
    Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)CrossRefGoogle Scholar
  26. 26.
    Voevodin, A., Hu, J., Fitz, T., Zabinski, J.: Tribological properties of adaptive nanocomposite coatings made of yttria stabilized zirconia and gold. Surf. Coat. Technol. 146, 351–356 (2001)CrossRefGoogle Scholar
  27. 27.
    Li, J.L., Xiong, D.S., Huo, M.F.: Friction and wear properties of Ni–Cr–W–Al–Ti–MoS2 at elevated temperatures and self-consumption phenomena. Wear 265, 566–575 (2008)CrossRefGoogle Scholar
  28. 28.
    Muratore, C., Bultman, J., Aouadi, S., Voevodin, A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 270, 140–145 (2011)CrossRefGoogle Scholar
  29. 29.
    Reich, S., Thomsen, C.: Raman spectroscopy of graphite. Philos. T Rov. Soc. A 362, 2271–2288 (2004)CrossRefGoogle Scholar
  30. 30.
    Tian, H.J., Wachs, I.E., Briand, L.E.: Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. J. Phys. Chem. B 109, 23491–23499 (2005)CrossRefGoogle Scholar
  31. 31.
    Li, C.: Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J. Catal. 216, 203–212 (2003)CrossRefGoogle Scholar
  32. 32.
    Stone, D., Liu, J., Singh, D., Muratore, C., Voevodin, A., Mishra, S., Rebholz, C., Ge, Q., Aouadi, S.: Layered atomic structures of double oxides for low shear strength at high temperatures. Scripta Mater. 62, 735–738 (2010)CrossRefGoogle Scholar
  33. 33.
    Oblonsky, L.J., Virtanen, S., Schroeder, V., Devine, T.M.: Surface enhanced Raman spectroscopy of iron oxide thin films: comparison with the passive film on iron. J. Electrochem. Soc. 144, 1604–1609 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations