Skip to main content
Log in

Tribological Thermostability of Carbon Film with Vertically Aligned Graphene Sheets

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribological thermostability of carbon film with vertically aligned graphene sheets was studied with annealing temperatures up to 1,750 °C. The carbon film was deposited on silicon carbide substrate by electron cyclotron resonance plasma sputtering. Tribological thermostabilities of the carbon film in terms of friction coefficient, wear life, and nanoscratch depth were investigated by Pin-on-Disk tribometer and atomic force microscopy. The evolution of nanostructure of vertically aligned graphene sheets in the carbon film as a function of annealing temperature was examined by Raman spectroscopy and transmission electron microscopy. The results showed that the friction coefficient, wear life, and nanoscratch depth of the carbon film were thermally stable up to 1,250 °C. When the annealing temperature was 1,500 °C, the friction coefficient and the nanoscratch depth increased, the wear life decreased, but still all were of considerable values. These variations were attributed to the initiation of tubular-like structure originated from graphene sheets stacks. After annealing at 1,750 °C, tribological performances degraded catastrophically due to the abundant formation of tubular-like structures and the appearance of a graphitic interlayer between the film and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Charitidis, C.A.: Nanomechanical and nanotribological properties of carbon-based thin films: a review. Int. J. Refract. Met. Hard Mater. 28, 51–70 (2010)

    Article  CAS  Google Scholar 

  2. Grierson, D.S., Carpick, R.W.: Nanotribology of carbon-based materials. Nanotoday 2, 12–21 (2007)

    Article  Google Scholar 

  3. Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)

    Article  CAS  Google Scholar 

  4. Li, H.X., Xu, T., Wang, C.B., Chen, J.M., Zhou, H.D., Liu, H.W.: Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films. Thin Solid Films 515, 2153–2160 (2006)

    Article  CAS  Google Scholar 

  5. Wang, Z., Wang, C.B., Wang, Q., Zhang, J.Y.: Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films. J. Appl. Phys. 104, 073306 (2008)

    Article  Google Scholar 

  6. Ferrari, A.C., Kleinsorge, B., Morrison, N.A., Hart, A., Stolojan, V., Robertson, J.: Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191–7197 (1999)

    Article  CAS  Google Scholar 

  7. Grierson, D.S., Sumant, A.V., Konicek, A.R., Friedmann, T.A., Sullivan, J.P., Carpick, R.W.: Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010)

    Article  Google Scholar 

  8. Hirono, S., Umemura, S., Tomita, M., Kaneko, R.: Superhard conductive carbon nanocrystallite films. Appl. Phys. Lett. 80, 425–427 (2002)

    Article  CAS  Google Scholar 

  9. Shakerzadeh, M., Teo, E.H.T., Sorkin, A., Bosman, M., Tay, B.K., Su, H.: Plasma density induced formation of nanocrystals in physical vapor deposited carbon films. Carbon 49, 1733–1744 (2011)

    Article  CAS  Google Scholar 

  10. Teo, E.H.T., Kulik, J., Kauffmann, Y., Kalish, R., Lifshitz, Y.: Nanostructured carbon films with oriented graphitic planes. Appl. Phys. Lett. 98, 123104 (2011)

    Article  Google Scholar 

  11. Lau, D.W.M., Moafi, A., Taylor, M.B., Partridge, J.G., McCulloch, D.G., Powles, R.C., McKenzie, D.R.: The structural phases of non-crystalline carbon prepared by physical vapour deposition. Carbon 47, 3263–3270 (2009)

    Article  CAS  Google Scholar 

  12. McCulloch, D.G., Peng, J.L., McKenzie, D.R., Lau, S.P., Sheeja, D., Tay, B.K.: Mechanisms for the behavior of carbon films during annealing. Phys. Rev. B. 70, 085406 (2004)

    Article  Google Scholar 

  13. Marks, N.A., Cover, M.F., Kocer, C.: Simulating temperature effects in the growth of tetrahedral amorphous carbon: the importance of infrequent events. Appl. Phys. Lett. 89, 131924 (2006)

    Article  Google Scholar 

  14. McCulloch, D.G., Marks, N.A., McKenzie, D.R., Prawer, S.: Molecular dynamics and experimental studies of preferred orientation induced by compressive stress. Nucl. Instrum. Method B. 106(1–4), 545–549 (1995)

    Article  CAS  Google Scholar 

  15. Teo, E.H.T., Bolker, A., Kalish, R., Saguy, C.: Nano-patterning of through-film conductivity in anisotropic amorphous carbon induced using conductive atomic force microscopy. Carbon 49, 2679–2682 (2011)

    Article  CAS  Google Scholar 

  16. Shakerzadeh, M., Samani, M.K., Khosravian, N., Teo, E.H.T., Bosman, M., Tay, B.K.: Thermal conductivity of nanocrystalline carbon films studied by pulsed photothermal reflectance. Carbon 50, 1422–1444 (2012)

    Article  Google Scholar 

  17. Tsuchitani, S., Kaneko, R., Hirono, S.: Annealing-induced modification of superhard conductive carbon film. Jpn. J. Appl. Phys. 45, 7036–7043 (2006)

    Article  CAS  Google Scholar 

  18. Fan, X., Diao, D.F., Wang, K., Wang, C.: Multi-functional ECR plasma sputtering system for preparing amorphous carbon and Al–O–Si films. Surf. Coat. Technol. 206, 1963–1970 (2011)

    Article  CAS  Google Scholar 

  19. Wang, C., Diao, D.F.: Cross-linked graphene layer embedded carbon film prepared using electron irradiation in ECR plasma sputtering. Surf. Coat. Technol. 206, 1899–1904 (2011)

    Article  CAS  Google Scholar 

  20. Wang, C., Diao, D.F.: Graphene sheets embedded carbon film prepared by electron irradiation in electron cyclotron resonance plasma. Appl. Phys. Lett. 100, 231909 (2012)

    Article  Google Scholar 

  21. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14106 (2000)

    Article  CAS  Google Scholar 

  22. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  23. Huang, H., Chen, W., Chen, S., Wee, A.T.S.: Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2, 2513–2518 (2008)

    Article  CAS  Google Scholar 

  24. Diaz, J., Paolicelli, G., Ferrer, S., Comin, F.: Separation of the sp 3 and sp 2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B. 54, 8064–8069 (1996)

    Article  CAS  Google Scholar 

  25. Takai, K., Oga, M., Sato, H., Enoki, T., Ohki, Y., Akira, T., Suenaga, K., Iijima, S.: Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys. Rev. B. 67, 214202 (2003)

    Article  Google Scholar 

  26. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  27. Lu, W., Boeckl, J.J., Mitchel, W.C.: A critical review of growth of low-dimensional carbon nanostructures on SiC (0001): impact of growth environment. J. Phys. D. 43, 374004 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Nature Science Foundation of China (Grant No. 90923027, 51175405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Diao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Diao, D. Tribological Thermostability of Carbon Film with Vertically Aligned Graphene Sheets. Tribol Lett 50, 305–311 (2013). https://doi.org/10.1007/s11249-013-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0129-7

Keywords

Navigation