Skip to main content
Log in

A Numerical Contact Model Based on Real Surface Topography

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A numerical finite element contact model is developed to make use of the high precision surface topography data obtained at the nanoscale by atomic force microscopy or other imaging techniques while minimizing computational complexity. The model uses degrees of freedom that are normal to the surface, and uses the Boussinesq solution to relate the normal load to the long-range surface displacement response. The model for contact between two rough surfaces is developed in a step-by-step manner, taking into account the far-field effects of the loads developed at asperities that have come to contact in previous steps. Method accuracy is verified by comparison to simple test cases with well-defined analytical solutions. Agreement was found to be within 1 % for a wide range of practical loads for the high precision models. Applicability of extrapolation from lower precision models is presented. The real contact area estimates for micrometer-size tribology test machine surfaces are calculated and convergence behavior with mesh refinement is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. Roy. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  2. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)

    Article  Google Scholar 

  3. Yan, W., Komvopoulos, K.: Contact analysis of elastic–plastic fractal surfaces. J. Appl. Phys. 84, 3617–3624 (1998)

    Article  CAS  Google Scholar 

  4. Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. ASME J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  5. Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 26117 (2004)

    Article  CAS  Google Scholar 

  6. Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184106 (2002)

    Article  Google Scholar 

  7. Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231, 206–219 (1999)

    Article  CAS  Google Scholar 

  8. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, 1–62 (2005)

    Article  Google Scholar 

  9. Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques (Application of potentials to the study of equilibrium and motion of elastic solids.). Gauthier Villars, Paris (1885)

  10. Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Proc. Roy. Soc. Lond. A 228, 377–420 (1929)

    Google Scholar 

  11. Webster, M.N., Sayles, R.S.: A numerical model for the elastic frictionless contact of real rough surfaces. ASME J. Tribol. 108, 314–320 (1986)

    Article  Google Scholar 

  12. Poon, C.Y., Sayles, R.S.: Numerical contact model of a smooth ball on an anisotropic rough surface. ASME J. Tribol. 116, 194–201 (1994)

    Article  Google Scholar 

  13. Ren, N., Lee, S.C.: Contact simulation of three-dimensional rough surfaces using moving grid method. ASME J. Tribol. 115, 597–601 (1993)

    Article  Google Scholar 

  14. Liu, G., Wang, Q., Liu, S.: A three-dimensional thermal-mechanical asperity contact model for two nominally flat surfaces in contact. ASME J. Tribol. 123, 595–602 (2001)

    Article  Google Scholar 

  15. Dickrell, D.J., Dugger, M.T., Hamilton, M.A., Sawyer, W.G.: Direct contact-area computation for MEMS using real topographic surface data. J. Microelectromech. Syst. 16, 1263–1268 (2007)

    Article  Google Scholar 

  16. Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy, E.D., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)

    Article  CAS  Google Scholar 

  17. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Elements Analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  18. Plesha, M.E., Cook, R.D., Malkus, D.S.: FEMCOD—Program Description and User Guide. University of Wisconsin-Madison, Madison (1988)

    Google Scholar 

  19. Young, W.C.: Roark’s Formulas for Stress & Strain, 6th edn. McGraw-Hill, New York (1989)

    Google Scholar 

  20. Borodachev, N.M.: Impression of a punch with a flat square base into an elastic half-space. Int. Appl. Mech. 35, 989–994 (1999)

    Article  Google Scholar 

  21. De Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R., Corwin, A.D., Walraven, J.A., Redmond, J.M.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13, 63–74 (2004)

    Article  Google Scholar 

  22. Zhuravlev, V.A.: On question of theoretical justification of the Amontons–Coulomb law for friction of unlubricated surfaces. Zh. Tekh. Fiz. 10, 1447–1452 (1940)

    Google Scholar 

Download references

Acknowledgments

We acknowledge Graham Wabiszewksi (University of Pennsylvania) for the MEMS surface images, the Microelectronics Development Laboratory at Sandia National Laboratories for the samples, Matthew A. Hamilton (Exactech, Inc), and W. Gregory Sawyer (University of Florida) for useful discussions. This work was partially supported by the National Science Foundation, grant CMMI 1200019, and by the US Department of Energy, BES-Materials Sciences, under Contract DE-FG02-02ER46016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can K. Bora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bora, C.K., Plesha, M.E. & Carpick, R.W. A Numerical Contact Model Based on Real Surface Topography. Tribol Lett 50, 331–347 (2013). https://doi.org/10.1007/s11249-013-0128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0128-8

Keywords

Navigation