Skip to main content
Log in

On the Appropriate Use of Representative Stress Quantities at Correlation of Spherical Contact Problems

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Correlation of contact problems is discussed in a detailed manner with focus on spherical contact. The finite element method is used to determine appropriate stress quantities, representative stresses, aiming at a general description of contact quantities such as mean contact pressure, and the size of the contact area. It is shown that the mean contact pressure can be well described by a single master curve, while this is not so for the size of the contact area. The latter feature is explained partly by a pronounced effect from elastic deformation, but is also shown that large deformation effects can have a substantial influence on correlation attempts. The analysis is restricted to classical Mises elastoplasticity, but the results can also serve as a guideline for similar attempts when using more advanced constitutive modeling. An obvious application of the present results concerns material characterization by indentation testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hertz, H.: Uber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  2. Tabor, D.: Hardness of metals. Oxford University Press, London (1951)

    Google Scholar 

  3. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115–126 (1970)

    Article  Google Scholar 

  4. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  5. Storåkers, B., Biwa, S., Larsson, P.L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061–3083 (1997)

    Article  Google Scholar 

  6. Mesarovic, S.D., Fleck, N.A.: Frictionless indentation of dissimilar elastic–plastic spheres. Proc. R. Soc. Lond. A455, 2707–2728 (1999)

    Google Scholar 

  7. Mesarovic, S.D., Fleck, N.A.: Spherical indentation of elastic–plastic solids. Int. J. Solids Struct. 37, 7071–7091 (2000)

    Article  Google Scholar 

  8. Skrinjar, O., Larsson, P.L., Storåkers, B.: Local contact compliance relations at compaction of composite powders. J. Appl. Mech. 74, 164–168 (2007)

    Article  CAS  Google Scholar 

  9. Chaudhri, M.M.: A note on a common mistake in the analysis of nanoindentation data. J. Mater. Res. 16, 336–339 (2001)

    Article  CAS  Google Scholar 

  10. Larsson, P.L.: Investigation of sharp contact at rigid plastic conditions. Int. J. Mech. Sci. 43, 895–920 (2001)

    Article  Google Scholar 

  11. Larsson, P.L.: On the mechanical behavior of global parameters in material characterization by sharp indentation testing. J. Test. Eval. 32, 310–321 (2004)

    Google Scholar 

  12. Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679–2708 (1994)

    Article  Google Scholar 

  13. Larsson, P.L., Söderlund, E., Giannakopoulos, A.E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)

    Article  Google Scholar 

  14. Biwa, S., Storåkers, B.: Analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43, 1303–1334 (1995)

    Article  Google Scholar 

  15. Ogbonna, N., Fleck, N.A., Cocks, A.C.F.: Transient creep analysis of ball indentation. Int. J. Mech. Sci. 37, 1179–1202 (1995)

    Article  Google Scholar 

  16. Bartier, O., Hernot, X.: Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material. Int. J. Solids Struct. 49, 2015–2026 (2012)

    Article  CAS  Google Scholar 

  17. Atkins, A.G., Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149–164 (1965)

    Article  Google Scholar 

  18. Pethica, J.B., Hutchings, R., Oliver, W.C.: Hardness measurements at penetration depths as small as 20 nm. Philos. Mag. A48, 593–606 (1983)

    Google Scholar 

  19. Doerner, M.F., Gardner, D.S., Nix, W.D.: Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J. Mater. Res. 1, 845–851 (1986)

    Article  CAS  Google Scholar 

  20. Larsson, P.L.: Similarity methods for analysing indentation contact problems-advantages and disadvantages. J. Mater. Proc. Tech. 202, 15–21 (2008)

    Article  CAS  Google Scholar 

  21. Suresh, S., Giannakopoulos, A.E.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998)

    Article  CAS  Google Scholar 

  22. Carlsson, S., Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing. Part I. Theoretical and numerical analysis. Acta Mater. 49, 2179–2191 (2001)

    Article  CAS  Google Scholar 

  23. Swadener, J.G., Taljat, B., Pharr, G.M.: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001)

    Article  CAS  Google Scholar 

  24. Eriksson, C.L., Larsson, P.L., Rowcliffe, D.J.: Strain-hardening and residual stress effects in plastic zones around indentations. Mater. Sci. Eng. A 340, 193–203 (2003)

    Article  Google Scholar 

  25. Huber, N., Heerens, J.: On the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 56, 6205–6213 (2008)

    Article  CAS  Google Scholar 

  26. Fleck, N.A.: On the cold compaction of powders. J. Mech. Phys. Solids 43, 1409–1431 (1995)

    Article  CAS  Google Scholar 

  27. Larsson, P.L., Biwa, S., Storåkers, B.: Analysis of cold and hot isostatic compaction. Acta Mater. 44, 3655–3666 (1996)

    Article  CAS  Google Scholar 

  28. Storåkers, B., Fleck, N.A., McMeeking, R.M.: The visco-plastic compaction of composite powders. J. Mech. Phys. Solids 47, 785–815 (1999)

    Article  Google Scholar 

  29. Heyliger, P.R., McMeeking, R.M.: Cold plastic compaction of powders by a network model. J. Mech. Phys. Solids 49, 2031–2054 (2001)

    Article  Google Scholar 

  30. Pizette, P., Martin, C.L., Delette, G., Sornay, P., Sans, F.: Compaction of aggregated ceramic powders: from contact law to fracture and yield surfaces. Powder Technol. 198, 240–250 (2010)

    Article  CAS  Google Scholar 

  31. Bucaille, J.L., Felder, E., Hochstetter, G.: Mechanical analysis of the scratch test on elastic and perfectly plastic materials with three-dimensional finite element modeling. Wear 249, 422–432 (2001)

    Article  CAS  Google Scholar 

  32. Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Varjus, S.: A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254, 278–291 (2003)

    Article  CAS  Google Scholar 

  33. Wredenberg, F., Larsson, P.L.: On the numerics and correlation of scratch testing. J. Mech. Mater. Struct. 2, 573–594 (2007)

    Article  Google Scholar 

  34. Bellemare, S.C., Dao, M., Suresh, S.: Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mech. Mater. 40, 206–219 (2008)

    Article  Google Scholar 

  35. Wredenberg, F., Larsson, P.L.: Scratch testing of metals and polymers: experiments and numerics. Wear 266, 76–83 (2009)

    Article  CAS  Google Scholar 

  36. Meyer, E.: Untersuchen uber Härteprufung und Härte. Z. Ver. deutscher Ing. 52, 645–654 (1908)

    CAS  Google Scholar 

  37. O’Neill, H.: The significance of tensile and other mechanical test properties of metals. Proc. Inst. Mech. Eng. 151, 116–130 (1944)

    Article  Google Scholar 

  38. Kral, E.R., Komvopoulos, K., Bogy, D.B.: Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere. J. Appl. Mech. 60, 829–841 (1993)

    Article  Google Scholar 

  39. Brinell, J.A.: Memoire sur les epreuves a bille en acier. Congres International des Methodes d’Essai des Materiaux de. Construction 2, 83–94 (1901)

    Google Scholar 

  40. ABAQUS: Abaqus 6.9. Dassault Systemes Simula Corp., Providence, RI (2009)

  41. Larsson, P.L.: Modelling of sharp indentation experiments: some fundamental issues. Philos. Mag. 86, 5155–5177 (2006)

    Article  CAS  Google Scholar 

  42. Norbury, A.L., Samuel, T.: The recovery and sinking-in or piling-up of material in the Brinell test, and the effect of these factors on the correlation of the Brinell with certain other hardness tests. J. Iron Steel Inst. 117, 673–687 (1928)

    Google Scholar 

  43. Chaudhri, M.M.: Strain hardening around spherical indentations. Phys. Status Solidi A 182, 641–652 (2000)

    Article  CAS  Google Scholar 

  44. Mesarovic, S.D., Johnson, K.L.: Adhesive contact of elastic-plastic spheres. J. Mech. Phys. Solids 48, 2009–2033 (2000)

    Article  Google Scholar 

  45. Olsson, E., Larsson, P.L.: On force-displacement relations at contact between elastic-plastic spheres (2013) doi:10.1016/j.jmps.2013.01.004

  46. Timothy, S.P., Pearson, J.M., Hutchings, I.M.: The contact pressure distribution during plastic compression of lead spheres. Int. J. Mech. Sci. 29(10), 713–719 (1987)

    Article  Google Scholar 

  47. Chaudhri, M.M., Hutchings, I.M.: Strength measurements on rapidly solidified metal particles. J. Mater. Sci. Lett. 3, 79–82 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Lennart Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, E., Larsson, PL. On the Appropriate Use of Representative Stress Quantities at Correlation of Spherical Contact Problems. Tribol Lett 50, 221–232 (2013). https://doi.org/10.1007/s11249-013-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0114-1

Keywords

Navigation