Skip to main content
Log in

On the Correlation Between Residual Stresses and Global Indentation Quantities: Equi-Biaxial Stress Field

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Sharp indentation test have been studied very frequently in recent years and the fundamental knowledge of the mechanics of such test has reached some maturity. Such studies also include the correlation between residual stresses and the global properties, i.e., hardness and size of the contact area. The investigations presented have been based on experimental, theoretical, and numerical methods and as a result, the basic features of the problem are fairly well understood but quantitative relations, for the determination of residual stresses using sharp indentation, have been proven to be less accurate and accordingly not suitable for a practical situation, in particular so at predominantly compressive residual stresses. It is therefore the aim of the present study to investigate this matter in some detail and to determine possible mechanisms for the difference in indentation behavior between tension and compression and, with this as a background, determine relations suitable for a quantitative determination of the residual fields. The present analysis is based on theoretical and numerical methods and in the latter case, the finite element method is relied upon. Classical Mises elastoplastic material behavior is assumed throughout the investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marshall, D.B., Lawn, B.R.: Indentation of brittle materials. ASTM Spec. Tech. Publ. 889, 26–46 (1985)

    Google Scholar 

  2. Hehn, L., Zheng, C., Mecholsky, J.J., Hubbard, C.R.: Measurements of residual-stresses in Al2O3/Ni laminated composites using an X-ray-diffraction technique. J. Mater. Sci. 30, 1277–1282 (1995)

    Article  CAS  Google Scholar 

  3. Rendler, N.J., Vigness, I.: Hole-drilling strain-gauge method of measuring residual stresses. Exp. Mech. 13, 45–48 (1973)

    Article  Google Scholar 

  4. Flavenot, J.F., Nikulari, A.: Measures des contraintes residuelles, method de la fleche. Mem. Techn. du Cetim. 31, 6–42 (1977)

    Google Scholar 

  5. Kokubo, S.: On the change in hardness of a plate caused by bending. Sci. Rep. Tohuko Imp. Univ. Ser. 1(21), 256–267 (1932)

    Google Scholar 

  6. Sines, G., Carlson, R.: Hardness measurements for determination of residual stresses. ASTM Bull. 180, 357 (1952)

    Google Scholar 

  7. Pethica, J.B., Hutchings, R., Oliver, W.C.: Hardness measurements at penetration depths as small as 20 nm. Philos. Mag. A48, 593–606 (1983)

    Google Scholar 

  8. Doerner, M.F., Gardner, D.S., Nix, W.D.: Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J. Mater. Res. 1, 845–851 (1986)

    Article  CAS  Google Scholar 

  9. LaFontaine, W.R., Yost, B., Li, C.Y.: Effect of residual stress and adhesion on the hardness of copper films deposited on silicon. J. Mater. Res. 5, 776–783 (1990)

    Article  CAS  Google Scholar 

  10. LaFontaine, W.R., Paszkiet, C.A., Korhonen, M.A., Li, C.Y.: Residual stress measurements of thin aluminum metallizations by continuous indentation and X-ray stress measurement techniques. J. Mater. Res. 6, 2084–2090 (1991)

    Article  CAS  Google Scholar 

  11. Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation. Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752–759 (1996)

    Article  CAS  Google Scholar 

  12. Bolshakov, A., Oliver, W.C., Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation. Part II. Finite element simulations. J. Mater. Res. 11, 760–768 (1996)

    Article  CAS  Google Scholar 

  13. Suresh, S., Giannakopoulos, A.E.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998)

    Article  CAS  Google Scholar 

  14. Carlsson, S., Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing. Part I. Theoretical and numerical analysis. Acta Mater. 49, 2179–2191 (2001)

    Article  CAS  Google Scholar 

  15. Carlsson, S., Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing. Part II. Experimental investigation. Acta Mater. 49, 2193–2203 (2001)

    Article  CAS  Google Scholar 

  16. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115–126 (1970)

    Article  Google Scholar 

  17. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  18. Lee, Y.H., Kwon, D.: Measurement of residual-stress effect by nanoindentation on elastically strained (100) W. Scr. Mater. 49, 459–465 (2003)

    Article  CAS  Google Scholar 

  19. Lee, Y.H., Kwon, D.: Stress measurement of SS400 steel beam using the continuous indentation technique. Exp. Mech. 44, 55–61 (2004)

    Article  CAS  Google Scholar 

  20. Lee, Y.H., Kwon, D.: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52, 1555–1563 (2004)

    Article  CAS  Google Scholar 

  21. Huber, N., Heerens, J.: On the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 56, 6205–6213 (2008)

    Article  CAS  Google Scholar 

  22. Heerens, J., Mubarok, F., Huber, N.: Influence of specimen preparation, microstructure anisotropy, and residual stresses on stress–strain curves of rolled Al2024 T351 as derived from spherical indentation tests. J. Mater. Res. 24, 907–917 (2009)

    Article  CAS  Google Scholar 

  23. Swadener, J.G., Taljat, B., Pharr, G.M.: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001)

    Article  CAS  Google Scholar 

  24. Larsson, P.L.: Influence from the inclined angle of the indenter for determination of residual stress and strain fields by sharp indentation testing. J. Mater Proc. Technol. 184, 372–378 (2007)

    Article  CAS  Google Scholar 

  25. Bocciarelli, M., Maier, G.: Indentation and imprint mapping method for identification of residual stresses. Comput. Mater. Sci. 39, 381–392 (2007)

    Article  CAS  Google Scholar 

  26. Larsson, P.L.: On the mechanical behavior at sharp indentation of materials with compressive residual stresses. Mater. Des. 32, 1427–1434 (2011)

    Article  CAS  Google Scholar 

  27. ABAQUS: User’s Manual Version 6.9. Hibbitt, Karlsson and Sorensen Inc., Pawtucket, RI (2009)

  28. Tabor, D.: Hardness of Metals. Cambridge University Press, Cambridge (1951)

    Google Scholar 

  29. Atkins, A.G., Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149–164 (1965)

    Article  Google Scholar 

  30. Larsson, P.L.: Investigation of sharp contact at rigid plastic conditions. Int. J. Mech. Sci. 43, 895–920 (2001)

    Article  Google Scholar 

  31. Eriksson, C.L., Larsson, P.L., Rowcliffe, D.J.: Strain-hardening and residual stress effects in plastic zones around indentations. Mater. Sci. Eng. A340, 193–203 (2003)

    Google Scholar 

  32. Giannakopoulos, A.E., Larsson, P.L.: Analysis of pyramid indentation of pressure sensitive hard metals and ceramics. Mech. Mater. 25, 1–35 (1997)

    Article  Google Scholar 

  33. Carlsson, S., Biwa, S., Larsson, P.L.: On frictional effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42, 107–128 (2000)

    Article  Google Scholar 

  34. Larsson, P.L.: Modelling of sharp indentation experiments: some fundamental issues. Philos. Mag. 86, 5155–5177 (2006)

    Article  CAS  Google Scholar 

  35. Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679–2708 (1994)

    Article  Google Scholar 

  36. Larsson, P.L., Söderlund, E., Giannakopoulos, A.E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)

    Article  Google Scholar 

  37. Larsson, P.L., Giannakopoulos, A.E.: Tensile stresses and their implication to cracking at pyramid indentation of pressure-sensitive hard metals and ceramics. Mater. Sci. Eng. A254, 268–281 (1998)

    CAS  Google Scholar 

  38. Storåkers, B., Biwa, S., Larsson, P.L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061–3083 (1997)

    Article  Google Scholar 

  39. Bucaille, J.L., Felder, E., Hochstetter, G.: Mechanical analysis of the scratch test on elastic and perfectly plastic materials with three-dimensional finite element modeling. Wear 249, 422–432 (2001)

    Article  CAS  Google Scholar 

  40. Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Varjus, S.: A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254, 278–291 (2003)

    Article  CAS  Google Scholar 

  41. Bucaille, J.L., Felder, E., Hochstetter, G.: Experimental and three-dimensional finite element study of scratch test of polymers at large deformation. J. Tribol. 126, 372–379 (2004)

    Article  CAS  Google Scholar 

  42. Wredenberg, F., Larsson, P.L.: On the numerics and correlation of scratch testing. J. Mech. Mater. Struct. 2, 573–594 (2007)

    Article  Google Scholar 

  43. Bellemare, S.C., Dao, M., Suresh, S.: Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mech. Mater. 40, 206–219 (2008)

    Article  Google Scholar 

  44. Wredenberg, F., Larsson, P.L.: Scratch testing of metals and polymers: experiments and numerics. Wear 266, 76–83 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Lennart Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rydin, A., Larsson, PL. On the Correlation Between Residual Stresses and Global Indentation Quantities: Equi-Biaxial Stress Field. Tribol Lett 47, 31–42 (2012). https://doi.org/10.1007/s11249-012-9959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9959-y

Keywords

Navigation