Skip to main content
Log in

Influence of Ultrasonic Oscillation on Static and Sliding Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Vibrations of varying frequency and amplitude are used in many technological areas to control and reduce friction. In this study we report the results of systematic high-precision measurements of the static and sliding friction under the influence of ultrasonic oscillations. We investigate the effect of ultrasonic oscillations for in-plane and out-of-plane oscillations in the completely relevant interval of oscillation amplitudes and sliding velocities and for various material pairings. The experimental results are interpreted on the basis of both macroscopic and microscopic models. There are two main effects which are of interest for tribological applications. Firstly, the frictional force typically decreases with increasing oscillation amplitude, with an oscillation amplitude of about 0.1 μm typically being sufficient for a significant decrease of frictional force. Secondly, the decrease of force is larger at smaller sliding velocities; therefore, at sufficiently large oscillation amplitudes, the frictional force always increases with sliding velocity. This effect can be used to suppress frictionally induced vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Pohlman, R., Lehfeldt, E.: Influence of ultrasonic vibration on metallic friction. Ultrasonics 4, 178–185 (1966)

    Article  CAS  Google Scholar 

  2. Eaves, A., Smith, A., Waterhouse, W., Sansome, D.: Review of the application of ultrasonic vibrations to deforming metals. Ultrasonics 13, 162–170 (1975)

    Article  Google Scholar 

  3. Siegert, K., Ulmer, J.: Superimposing ultrasonic waves on the dies in tube and wire drawing. J. Eng. Mater. Technol. 123, 517 (2001)

    Article  Google Scholar 

  4. Murakawa, M.: The utility of radially and ultrasonically vibrated dies in the wire drawing process. J. Mater. Process. Technol. 113, 81–86 (2001)

    Article  Google Scholar 

  5. Ashida, Y., Aoyama, H.: Press forming using ultrasonic vibration. J. Mater. Process. Technol. 187–188, 118–122 (2007)

    Article  Google Scholar 

  6. Schmidt, J.: A note on the contact problem in an ultrasonic travelling wave motor. Int. J. Non-Linear Mech. 31, 915–924 (1996)

    Article  Google Scholar 

  7. Storck, H.: The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics 40, 379–383 (2002)

    Article  CAS  Google Scholar 

  8. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006)

    Article  CAS  Google Scholar 

  9. Fridman, H.D., Levesque, P.: Reduction of static friction by sonic vibrations. J. Appl. Phys. 30, 1572 (1959)

    Article  Google Scholar 

  10. Godfrey, D.: Vibration reduces metal to metal contact and causes an apparent reduction in friction. Tribol. Trans. 10, 183–192 (1967)

    Google Scholar 

  11. Tolstoi, D.M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10, 199–213 (1967)

    Article  Google Scholar 

  12. Lenkiewicz, W.: The sliding friction process: effect of external vibrations. Wear 13, 99–108 (1969)

    Article  Google Scholar 

  13. Broniec, Z., Lenkiewicz, W.: Static friction processes under dynamic loads and vibration. Wear 80, 261–271 (1982)

    Article  Google Scholar 

  14. Hess, D.P., Soom, A., Kim, C.: Normal vibrations and friction at a Hertzian contact under random excitation: theory and experiments. J. Sound Vib. 153, 491–508 (1992)

    Article  Google Scholar 

  15. Hess, D.P., Soom, A.: Normal vibrations and friction under harmonic loads: part I: hertzian contacts. J. Tribol. 113, 80 (1991)

    Article  Google Scholar 

  16. Tworzydlo, W., Becker, E.: Influence of forced vibrations on the static coefficient of friction: numerical modeling. Wear 143, 175–196 (1991)

    Article  Google Scholar 

  17. Skare, T., Stahl, J.: Static and dynamic friction processes under the influence of external vibrations. Wear 154, 177–192 (1992)

    Article  Google Scholar 

  18. Weishaupt, W.: Reibungsverminderung durch mechanische Schwingungen. Technisches Messen 11, 345–348 (1976)

    Google Scholar 

  19. Goto, H., Ashida, M., Terauchi, Y.: Effects of ultrasonic vibration on the wear characteristics of a carbon steel: analysis of the wear mechanism. Wear 94, 13–27 (1984)

    Article  CAS  Google Scholar 

  20. Dinelli, F., Biswas, S.K., Briggs, G.A.D., Kolosov, O.V.: Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177 (1997)

    Article  CAS  Google Scholar 

  21. Thomsen, J.: Using fast vibrations to quench friction-induces oscillations. J. Sound Vib. 228, 1079–1102 (1999)

    Article  Google Scholar 

  22. Kumar, V.: Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol. Int. 37, 833–840 (2004)

    Article  CAS  Google Scholar 

  23. Littmann, W., Storck, H., Wallaschek, J.: Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Arch. Appl. Mech. 71, 549–554 (2001)

    Article  Google Scholar 

  24. Tsai, C.C., Tseng, C.H.: The effect of friction reduction in the presence of in-plane vibrations. Arch of Appl Mech 75, 164–176 (2005)

    Article  Google Scholar 

  25. Chowdhury, M., Helali, M.: The effect of frequency of vibration and humidity on the coefficient of friction. Tribol. Int. 39, 958–962 (2006)

    Article  CAS  Google Scholar 

  26. Chowdhury, M., Helali, M.: The effect of amplitude of vibration on the coefficient of friction for different materials. Tribol. Int. 41, 307–314 (2008)

    Article  CAS  Google Scholar 

  27. Popov, V.L., Starcevic, J.: Tribospectroscopical investigation of a couple steel–steel. Tech. Phys. Lett. 31(7), 86–90 (2005)

    Google Scholar 

  28. Popov, V.L., Starcevic, J., Filippov, A.E.: Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes. Tribol. Lett. 39, 25–30 (2010)

    Article  CAS  Google Scholar 

  29. Popov, V.L., Starczewicz, J.: Effect of vibrations on the laboratory model ‘earthquake’ statistics. Tech. Phys. Lett. 32, 630–633 (2006)

    Article  CAS  Google Scholar 

  30. Popov, V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Book  Google Scholar 

  31. Farrell, O.J., Ross, B.: Solved Problems: Gamma and Beta Functions, Legendre Polynomials, Bessel Functions. The Macmillan Company, New York (1963)

    Google Scholar 

  32. Popov, V.L., Starcevic, J., Teidelt, E.: Influence of in-plane and out-of-plane ultrasonic oscillations on sliding friction. Energy Environ. Asp. Tribol., 128–136 (2010)

  33. Kattenstroth, K., Harms, H.H., Lang, T., Wurpts, W., Twiefel, J., Wallaschek, J.: Reibkraftreduktion mittles Ultraschallreduktion in der Bodenbearbeitung. Landtech. 66(1), 10–13 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the DFG and ESF within the framework of project ACOF (Active Control of Friction).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Teidelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teidelt, E., Starcevic, J. & Popov, V.L. Influence of Ultrasonic Oscillation on Static and Sliding Friction. Tribol Lett 48, 51–62 (2012). https://doi.org/10.1007/s11249-012-9937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9937-4

Keywords

Navigation