Tribology Letters

, Volume 50, Issue 1, pp 41–48 | Cite as

Contact Mechanics of Laser-Textured Surfaces

Correlating Contact Area and Friction
  • Nikolay Prodanov
  • Carsten Gachot
  • Andreas Rosenkranz
  • Frank Mücklich
  • Martin H. Müser
Original Paper


We study numerically the contact mechanics of a flat and a curved solid. Each solid bears laser-induced, periodic grooves on its rubbing surface. Our surface topographies produce a similar load and resolution dependence of the true contact area as nominally flat, but randomly rough, self-affine surfaces. However, the contact area of laser-textured solids depends on their relative orientation. The estimated true contact areas correlate with kinetic friction measurements.


Contact mechanics Friction Material treatment effects 



N.P. and M.H.M. are grateful for computing time on JUROPA at the FZ Jülich Supercomputing Centre. MHM acknowledges support from the German Research Foundation (DFG) through grant Mu 1694/5-1.


  1. 1.
    Shinjo, K., Hirano, M.: Dynamics of friction: superlubric state. Surf. Sci. 283, 473–478 (1993)CrossRefGoogle Scholar
  2. 2.
    Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’ laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)CrossRefGoogle Scholar
  3. 3.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, Article No. 126101 (2004)Google Scholar
  4. 4.
    Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)CrossRefGoogle Scholar
  5. 5.
    Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248–253 (2005)CrossRefGoogle Scholar
  6. 6.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003)CrossRefGoogle Scholar
  7. 7.
    Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., Etsion, I.: Friction and wear of MoS(2) films on laser textured steel surfaces. Surf. Coat. Technol. 202, 3332–3340 (2008)CrossRefGoogle Scholar
  8. 8.
    Sung, I.H., Lee, H.S., Kim, D.E.: Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear 254, 1019–1031 (2003)CrossRefGoogle Scholar
  9. 9.
    Bowden, F.P., Tabor, D.: Friction and lubrication. Wiley, New York (1956)Google Scholar
  10. 10.
    Berman, A., Drummond, C., Israelachvili, J.N.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)CrossRefGoogle Scholar
  11. 11.
    He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)CrossRefGoogle Scholar
  12. 12.
    Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)CrossRefGoogle Scholar
  13. 13.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  14. 14.
    Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefGoogle Scholar
  15. 15.
    Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  16. 16.
    Shengfeng, C., Robbins, M.O.: Defining contact at the atomic scale. Tribol. Lett. 39, 329–348 (2010)CrossRefGoogle Scholar
  17. 17.
    Eder, S., Vernes, A., Vorlaufer, G., Betz, G.: Molecular dynamics simulations of mixed lubrication with smooth particle post-processing. J. Phys. Condens. Matter 23, Article No. 175004 (2011)Google Scholar
  18. 18.
    Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., Mücklich, F.: Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol. Lett. doi: 10.1007/s11249-012-0057-y
  19. 19.
    Yao, Y., Schlesinger, M., Drake, G.W.F.: A multiscale finite-element method for solving rough-surface elasticcontact problems. Can. J. Phys. 82, 679–699 (2004)CrossRefGoogle Scholar
  20. 20.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRefGoogle Scholar
  21. 21.
    Carvill, J.: Mechanical Engineers Data Handbook I. Butterworth-Heinemann, Oxford (1993)Google Scholar
  22. 22.
    Gao, F., Leach, R., Petzing, J., Coupland, J.: Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 19, Article No. 015303 (2008)Google Scholar
  23. 23.
    Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, Article No. 075420 (2006)Google Scholar
  24. 24.
    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, Article No. 244301 (2012)Google Scholar
  25. 25.
    Persson, B.N.J.: Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett. 99, Article No. 125502 (2007)Google Scholar
  26. 26.
    Campañá, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys. Condens. Matter 23, Article No. 085001 (2011)Google Scholar
  27. 27.
    Sun, F., Van der Giessen, E., Nicola, L.: Plastic flattening of a sinusoidal metal surface: a discrete dislocation plasticity study. Wear 296, 672–680 (2012)CrossRefGoogle Scholar
  28. 28.
    Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, Article No. 026117 (2004)Google Scholar
  29. 29.
    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005–38007 (2007)CrossRefGoogle Scholar
  30. 30.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Solids 60, 973–982 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nikolay Prodanov
    • 1
    • 2
  • Carsten Gachot
    • 1
  • Andreas Rosenkranz
    • 1
  • Frank Mücklich
    • 1
  • Martin H. Müser
    • 2
  1. 1.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany
  2. 2.Jülich Supercomputing Centre, Institute for Advanced Simulation, FZ JülichJülichGermany

Personalised recommendations