Skip to main content

Dry Friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry

Abstract

The ability to tune friction by tailoring surface topographies at micron length scales and by changing the relative orientation of crystallites at the atomic scale is well established. Here, we investigate if the two concepts combine, i.e. if the relative orientation of surfaces affects dry friction between laser-textured surfaces. Laser patterning was used on austenitic stainless steel substrates and on tribometer testing balls made of 100Cr6 to create linear periodic arrays with different structural wavelengths or periodicities (5, 9 and 18 μm). Pairing each substrate with a ball of the same periodicity, the different arrays were subjected to dry sliding tests at 0°/90° relative alignment between the linear patters. We observe that the patterning reduces friction after running-in. The reduction increases with decreasing wavelength and also depends sensitively on the relative alignment and the chemistry of the sliding surfaces. Our results highlight the possibility to create tailored contacting surface geometries leading to tunable frictional properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Bowden, F.P., Tabor, D.: Mechanisms of metallic friction. Nature 150, 197–199 (1942)

    Article  Google Scholar 

  2. 2.

    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991)

    Article  CAS  Google Scholar 

  3. 3.

    Dienwiebel, M., et al.: Superlubricity of graphite. Phys. Rev. Lett. 62(126101), 1–4 (2004)

    Google Scholar 

  4. 4.

    Sondhauß, J., Fuchs, H., Schirmeisen, A.: Frictional properties of a mesoscopic contact with engineered surface roughness. Tribol. Lett. 42, 319–324 (2011)

    Article  Google Scholar 

  5. 5.

    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  CAS  Google Scholar 

  6. 6.

    Willis, E.: Surface finish in relation to cylinder liners. Wear 109, 351–366 (1986)

    Article  Google Scholar 

  7. 7.

    Gerbig, Y., Dumitru, G., Romano, V., Spassov, V., Haefke, H.: Effects of laser texturing on technical surfaces. MRS Proc. 750, Y5.37 (2002)

    Google Scholar 

  8. 8.

    Etsion, I., Kligerman, Y., Halperin, G.: Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol. Trans. 42, 511–516 (1999)

    Article  CAS  Google Scholar 

  9. 9.

    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003)

    Article  CAS  Google Scholar 

  10. 10.

    Rapoport, L., et al.: Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 267, 1203–1207 (2009)

    Article  CAS  Google Scholar 

  11. 11.

    Li, J., et al.: Effect of surface laser texture on friction properties of nickel-based composite. Tribol. Int. 43, 1193–1199 (2010)

    Article  CAS  Google Scholar 

  12. 12.

    Kelly, M.K., et al.: High resolution thermal processing of semiconductors using pulsed-laser interference patterning. Phys. Stat. Sol. A 166, 651–657 (1998)

    Article  CAS  Google Scholar 

  13. 13.

    Mücklich, F., et al.: Laser interference metallurgy-using interference as a tool for micro/nano structuring. Int. J. Mater. Res. 97, 1337–1344 (2006)

    Google Scholar 

  14. 14.

    Sun, Z., et al.: Two- and three-dimensional micro/nanostructure patterning of CdS—polymer nano composites with a laser interference technique and in situ synthesis. Nanotechnology 19(3), 1–8 (2008)

    Article  Google Scholar 

  15. 15.

    Huang, J., et al.: Tunable surface texturing by polarization-controlled three-beam interference. J. Micromech. Microeng. 20, 1–6 (2010)

    CAS  Google Scholar 

  16. 16.

    Daniel, C., Mücklich, F.: Micro-structural characterization of laser interference irradiated Ni/Al multi-films. Appl. Surf. Sci. 242, 140–146 (2005)

    Article  CAS  Google Scholar 

  17. 17.

    Nebel, C.E., et al.: Laser-interference crystallization of amorphous silicon—applications and properties. Phys. Stat. Sol. A 166, 667–673 (1998)

    Article  CAS  Google Scholar 

  18. 18.

    Gachot, C., et al.: Comparative study of grain sizes and orientation in microstructured Au, Pt and W thin films designed by laser interference metallurgy. Appl. Surf. Sci. 255, 5626–5632 (2009)

    Article  CAS  Google Scholar 

  19. 19.

    Gao, F., Leach, R., Petzing, J., Coupland, J.: Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 19, 1–13 (2008)

    Google Scholar 

  20. 20.

    Lasagni, A.F., D′Alessandria, M., Giovanelli, R., Mücklich, F.: Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy. Appl. Surf. Sci. 254, 930–936 (2007)

    Article  CAS  Google Scholar 

  21. 21.

    Lasagni, A.F.: Advanced design of periodical structures by laser interference metallurgy in the micro/nano scale on macroscopic areas. PhD thesis, Saarland University, Saarbrücken (2006)

  22. 22.

    Carbone, G., Bottiglione, F.: Asperity contact theories—do they predict linearity between contact area and load. J. Mech. Phys. Solids 56, 2555–2572 (2008)

    Google Scholar 

  23. 23.

    Talonen, J., Nenonen, P., Pape, G., Hänninen, H.: Effect of strain rate on the strain- induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A 36A, 421–432 (2005)

    Article  CAS  Google Scholar 

  24. 24.

    Haynes, W.M., Lyde, D.R.: Handbook of Chemistry and Physics. CRC Press, Taylor and Francis Group, Boca Raton (2010)

    Google Scholar 

  25. 25.

    Renusch, D., Veal, B., Natesan, K., Grimsditch, M.: Transient oxidation in Fe–Cr–Ni alloys—a Raman-scattering study. Oxid. Met. 46, 365–381 (1996)

    Article  CAS  Google Scholar 

  26. 26.

    Oh, S.J., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112, 59–66 (1998)

    Article  CAS  Google Scholar 

  27. 27.

    McCarty, K.F., Boehme, D.R.: A Raman study of the systems Fe3–xCrxO4 and Fe2–xCrxO3. J. Solid State Chem. 79, 19–27 (1989)

    Article  CAS  Google Scholar 

  28. 28.

    Farrow, R.L., Benner, R.E., Nagelberg, A.S., Mattern, P.L.: Characterization of surface oxides by Raman spectroscopy. Thin Solid Films 73, 353–358 (1980)

    Article  CAS  Google Scholar 

  29. 29.

    Raman, R.K.S., Gleeson, B., Young, D.J.: Laser Raman spectroscopy—a technique for rapid characterisation of oxide scale layers. Mater. Sci. Technol. 14, 373–376 (2011)

    Article  Google Scholar 

  30. 30.

    Odziemkowski, M.S., Schuhmacher, T.T., Gillham, R.W., Reardon, E.J.: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corros. Sci. 40, 371–389 (1998)

    Article  CAS  Google Scholar 

  31. 31.

    De Faria, D.L.A., De Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997)

    Article  Google Scholar 

  32. 32.

    Müser, M.H.: Der mikroskopische Ursprung der Reibung. Phys. J. 2, 43–48 (2003)

    Google Scholar 

  33. 33.

    Campbell, W.E. Proceedings of M.I.T., p. 197. MIT Press, Cambridge (1940)

  34. 34.

    He, G., Robbins, M.O., Müser, M.H.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)

    Article  CAS  Google Scholar 

  35. 35.

    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    Article  CAS  Google Scholar 

  36. 36.

    Hübner, W.: Phase transformations in austenitic stainless steels during low temperature tribological stressing. Tribol. Int. 34, 231–236 (2001)

    Article  Google Scholar 

  37. 37.

    Schramm, R.E., Reed, R.P.: Stacking fault energy of seven commercial austenitic stainless steels. Metall. Mater. Trans. A 6A, 1345–1351 (1975)

    CAS  Google Scholar 

  38. 38.

    Feller, H.G., Gao, B.: Correlation of tribological and metal physics data: the role of stacking fault energy. Wear 132, 1–7 (1989)

    Article  CAS  Google Scholar 

  39. 39.

    Rigney, D.A.: Large strains associated with sliding contact of metals. Mater. Res. Innov. 1, 231–234 (1998)

    Article  CAS  Google Scholar 

  40. 40.

    Kuhlmann-Wilsdorf, D.: Dislocation behavior in fatigue IV. Quantitative interpretation of friction stress and back stress derived from hysteresis loops. Mater. Sci. Eng. 39, 231–245 (1979)

    Article  CAS  Google Scholar 

  41. 41.

    Prodanov, N., Gachot, C., Rosenkranz, A., Mücklich, F., Müser, M.H.: Contact mechanics of laser-textured surfaces—correlating contact area and friction. Tribol Lett. doi:10.1007/s11249-012-0064-z

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Gachot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gachot, C., Rosenkranz, A., Reinert, L. et al. Dry Friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry. Tribol Lett 49, 193–202 (2013). https://doi.org/10.1007/s11249-012-0057-y

Download citation

Keywords

  • Laser interference patterning
  • Dry friction
  • Interlocking