Tribology Letters

, Volume 49, Issue 1, pp 193–202 | Cite as

Dry Friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry

  • Carsten Gachot
  • Andreas Rosenkranz
  • Leander Reinert
  • Estéban Ramos-Moore
  • Nicolas Souza
  • Martin H. Müser
  • Frank Mücklich
Original Paper

Abstract

The ability to tune friction by tailoring surface topographies at micron length scales and by changing the relative orientation of crystallites at the atomic scale is well established. Here, we investigate if the two concepts combine, i.e. if the relative orientation of surfaces affects dry friction between laser-textured surfaces. Laser patterning was used on austenitic stainless steel substrates and on tribometer testing balls made of 100Cr6 to create linear periodic arrays with different structural wavelengths or periodicities (5, 9 and 18 μm). Pairing each substrate with a ball of the same periodicity, the different arrays were subjected to dry sliding tests at 0°/90° relative alignment between the linear patters. We observe that the patterning reduces friction after running-in. The reduction increases with decreasing wavelength and also depends sensitively on the relative alignment and the chemistry of the sliding surfaces. Our results highlight the possibility to create tailored contacting surface geometries leading to tunable frictional properties.

Keywords

Laser interference patterning Dry friction Interlocking 

References

  1. 1.
    Bowden, F.P., Tabor, D.: Mechanisms of metallic friction. Nature 150, 197–199 (1942)CrossRefGoogle Scholar
  2. 2.
    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991)CrossRefGoogle Scholar
  3. 3.
    Dienwiebel, M., et al.: Superlubricity of graphite. Phys. Rev. Lett. 62(126101), 1–4 (2004)Google Scholar
  4. 4.
    Sondhauß, J., Fuchs, H., Schirmeisen, A.: Frictional properties of a mesoscopic contact with engineered surface roughness. Tribol. Lett. 42, 319–324 (2011)CrossRefGoogle Scholar
  5. 5.
    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)CrossRefGoogle Scholar
  6. 6.
    Willis, E.: Surface finish in relation to cylinder liners. Wear 109, 351–366 (1986)CrossRefGoogle Scholar
  7. 7.
    Gerbig, Y., Dumitru, G., Romano, V., Spassov, V., Haefke, H.: Effects of laser texturing on technical surfaces. MRS Proc. 750, Y5.37 (2002)Google Scholar
  8. 8.
    Etsion, I., Kligerman, Y., Halperin, G.: Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol. Trans. 42, 511–516 (1999)CrossRefGoogle Scholar
  9. 9.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003)CrossRefGoogle Scholar
  10. 10.
    Rapoport, L., et al.: Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 267, 1203–1207 (2009)CrossRefGoogle Scholar
  11. 11.
    Li, J., et al.: Effect of surface laser texture on friction properties of nickel-based composite. Tribol. Int. 43, 1193–1199 (2010)CrossRefGoogle Scholar
  12. 12.
    Kelly, M.K., et al.: High resolution thermal processing of semiconductors using pulsed-laser interference patterning. Phys. Stat. Sol. A 166, 651–657 (1998)CrossRefGoogle Scholar
  13. 13.
    Mücklich, F., et al.: Laser interference metallurgy-using interference as a tool for micro/nano structuring. Int. J. Mater. Res. 97, 1337–1344 (2006)Google Scholar
  14. 14.
    Sun, Z., et al.: Two- and three-dimensional micro/nanostructure patterning of CdS—polymer nano composites with a laser interference technique and in situ synthesis. Nanotechnology 19(3), 1–8 (2008)CrossRefGoogle Scholar
  15. 15.
    Huang, J., et al.: Tunable surface texturing by polarization-controlled three-beam interference. J. Micromech. Microeng. 20, 1–6 (2010)Google Scholar
  16. 16.
    Daniel, C., Mücklich, F.: Micro-structural characterization of laser interference irradiated Ni/Al multi-films. Appl. Surf. Sci. 242, 140–146 (2005)CrossRefGoogle Scholar
  17. 17.
    Nebel, C.E., et al.: Laser-interference crystallization of amorphous silicon—applications and properties. Phys. Stat. Sol. A 166, 667–673 (1998)CrossRefGoogle Scholar
  18. 18.
    Gachot, C., et al.: Comparative study of grain sizes and orientation in microstructured Au, Pt and W thin films designed by laser interference metallurgy. Appl. Surf. Sci. 255, 5626–5632 (2009)CrossRefGoogle Scholar
  19. 19.
    Gao, F., Leach, R., Petzing, J., Coupland, J.: Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 19, 1–13 (2008)Google Scholar
  20. 20.
    Lasagni, A.F., D′Alessandria, M., Giovanelli, R., Mücklich, F.: Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy. Appl. Surf. Sci. 254, 930–936 (2007)CrossRefGoogle Scholar
  21. 21.
    Lasagni, A.F.: Advanced design of periodical structures by laser interference metallurgy in the micro/nano scale on macroscopic areas. PhD thesis, Saarland University, Saarbrücken (2006)Google Scholar
  22. 22.
    Carbone, G., Bottiglione, F.: Asperity contact theories—do they predict linearity between contact area and load. J. Mech. Phys. Solids 56, 2555–2572 (2008)Google Scholar
  23. 23.
    Talonen, J., Nenonen, P., Pape, G., Hänninen, H.: Effect of strain rate on the strain- induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A 36A, 421–432 (2005)CrossRefGoogle Scholar
  24. 24.
    Haynes, W.M., Lyde, D.R.: Handbook of Chemistry and Physics. CRC Press, Taylor and Francis Group, Boca Raton (2010)Google Scholar
  25. 25.
    Renusch, D., Veal, B., Natesan, K., Grimsditch, M.: Transient oxidation in Fe–Cr–Ni alloys—a Raman-scattering study. Oxid. Met. 46, 365–381 (1996)CrossRefGoogle Scholar
  26. 26.
    Oh, S.J., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112, 59–66 (1998)CrossRefGoogle Scholar
  27. 27.
    McCarty, K.F., Boehme, D.R.: A Raman study of the systems Fe3–xCrxO4 and Fe2–xCrxO3. J. Solid State Chem. 79, 19–27 (1989)CrossRefGoogle Scholar
  28. 28.
    Farrow, R.L., Benner, R.E., Nagelberg, A.S., Mattern, P.L.: Characterization of surface oxides by Raman spectroscopy. Thin Solid Films 73, 353–358 (1980)CrossRefGoogle Scholar
  29. 29.
    Raman, R.K.S., Gleeson, B., Young, D.J.: Laser Raman spectroscopy—a technique for rapid characterisation of oxide scale layers. Mater. Sci. Technol. 14, 373–376 (2011)CrossRefGoogle Scholar
  30. 30.
    Odziemkowski, M.S., Schuhmacher, T.T., Gillham, R.W., Reardon, E.J.: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corros. Sci. 40, 371–389 (1998)CrossRefGoogle Scholar
  31. 31.
    De Faria, D.L.A., De Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997)CrossRefGoogle Scholar
  32. 32.
    Müser, M.H.: Der mikroskopische Ursprung der Reibung. Phys. J. 2, 43–48 (2003)Google Scholar
  33. 33.
    Campbell, W.E. Proceedings of M.I.T., p. 197. MIT Press, Cambridge (1940)Google Scholar
  34. 34.
    He, G., Robbins, M.O., Müser, M.H.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)CrossRefGoogle Scholar
  35. 35.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  36. 36.
    Hübner, W.: Phase transformations in austenitic stainless steels during low temperature tribological stressing. Tribol. Int. 34, 231–236 (2001)CrossRefGoogle Scholar
  37. 37.
    Schramm, R.E., Reed, R.P.: Stacking fault energy of seven commercial austenitic stainless steels. Metall. Mater. Trans. A 6A, 1345–1351 (1975)Google Scholar
  38. 38.
    Feller, H.G., Gao, B.: Correlation of tribological and metal physics data: the role of stacking fault energy. Wear 132, 1–7 (1989)CrossRefGoogle Scholar
  39. 39.
    Rigney, D.A.: Large strains associated with sliding contact of metals. Mater. Res. Innov. 1, 231–234 (1998)CrossRefGoogle Scholar
  40. 40.
    Kuhlmann-Wilsdorf, D.: Dislocation behavior in fatigue IV. Quantitative interpretation of friction stress and back stress derived from hysteresis loops. Mater. Sci. Eng. 39, 231–245 (1979)CrossRefGoogle Scholar
  41. 41.
    Prodanov, N., Gachot, C., Rosenkranz, A., Mücklich, F., Müser, M.H.: Contact mechanics of laser-textured surfaces—correlating contact area and friction. Tribol Lett. doi:10.1007/s11249-012-0064-z

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Carsten Gachot
    • 1
  • Andreas Rosenkranz
    • 1
  • Leander Reinert
    • 1
  • Estéban Ramos-Moore
    • 1
    • 3
  • Nicolas Souza
    • 1
  • Martin H. Müser
    • 2
  • Frank Mücklich
    • 1
  1. 1.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany
  2. 2.Jülich Supercomputing CentreJülichGermany
  3. 3.Facultad de Fisica, Pontificia Universidad Catolica de ChileSantiagoChile

Personalised recommendations