Skip to main content
Log in

Hydrodynamic Friction Reduction in a MAC–Hexadecane Lubricated MEMS Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Recent research has shown that hydrodynamic lubrication is an effective means of reducing friction in high sliding micro-electromechanical systems (MEMS). At high speeds, however, such lubrication can lead to increased friction due to viscous drag. This article describes a series of hydrodynamic tests on a silicon MEMS contact lubricated with a blend of hexadecane and a multiply-alkylated cyclopentane (MAC). Results show that the presence of the MAC reduces hydrodynamic friction compared with neat hexadecane. Such behaviour is contrary to conventional hydrodynamic theory, since the viscosity of the MAC—a mixture of di- and tri-(2-octyldodecyl)-cyclopentane—is significantly higher than that of neat hexadecane. This effect increases with MAC concentration up to an optimum value of 3 wt%, where the hydrodynamic friction coefficient at 15,000 rpm is reduced from 0.5 to 0.3. Above this concentration, friction begins to rise due to the overriding effect of increasing viscosity. The viscosity of the blended lubricant increased monotonically with MAC concentration, when measured using both a Stabinger and an ultra-high shear viscometer. In addition to this, no reduction in friction was observed when a squalane–hexadecane blend of equal viscosity was tested. This suggests that some property of the MAC–hexadecane lubricant, other than its viscosity, is influencing hydrodynamic lubrication. A tentative explanation for this behaviour is that the MAC induces the liquid to slip, rather than shear, close to the silicon surfaces. This hypothesis is supported by the fact that the friction reducing ability of the MAC blend was inhibited by the inclusion of octadecylamine—a substance known to form films on silicon surfaces. Furthermore, the MAC reduces friction in the mixed regime, in a manner suggesting that the formation of a viscous boundary layer. This unusual behaviour may have useful implications for reducing hydrodynamic friction in liquid-lubricated MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Syms, R.R.A., Zou, H., Stagg, J., Veladi, H.: Sliding-blade MEMS iris and variable optical attenuator. J. Micromech. Microeng. 14(12), 1700 (2004)

    Article  Google Scholar 

  2. Girbau, D., Pradell, L., Lazaro, A., Nebot, A.: Electrothermally actuated RF MEMS switches suspended on a low-resistivity substrate. J. Microelectromech. Syst. 16(5), 1061–1070 (2007)

    Article  CAS  Google Scholar 

  3. Chau, K.H.L., Sulouff, R.E.: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products. Microelectron. J. (Inc. J. Semicust. ICs) 29(9), 579–586 (1998)

    Google Scholar 

  4. Velten, T., Ruf, H.H., Barrow, D., Aspragathos, N., Lazarou, P., Erik, J., Malek, C.K., Richter, M., Kruckow, J., Wackerle, M.: Packaging of bio-MEMS: strategies, technologies, and applications. IEEE Trans. Adv. Packag. 28(4), 533–546 (2005)

    Article  Google Scholar 

  5. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2(5), 22–29 (2007)

    Article  Google Scholar 

  6. Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators A Phys. 82(1–3), 219–223 (2000)

    Article  Google Scholar 

  7. Srinivasan, U., Foster, J.D., Habib, U., Howe, R.T., Maboudian, R., Senft, D.C., Dugger, M.T.: Lubrication of polysilicon micromechanisms with self-assembled monolayers. In: Conference on Solid State Sensor and Actuator Workshop, Hilton Head, 1 Jun 1998

  8. Srinivasan, U., Houston, M.R., Rowe, R.T., Maboudian, R.: Self-assembled fluorocarbon films for enhanced stiction reduction. In: International Conference on Solid State Sensors and Actuators, TRANSDUCERS, Chicago (1997)

  9. Smallwood, S.A., Eapen, K.C., Patton, S.T., Zabinski, J.S.: Performance results of MEMS coated with a conformal DLC. Wear 260(11‚Äì12), 1179–1189 (2006)

    Article  CAS  Google Scholar 

  10. Tagawa, M., Ikemura, M., Nakayama, Y., Ohmae, N.: Effect of water adsorption on microtribological properties of hydrogenated diamond-like carbon films. Tribol. Lett. 17(3), 575–580 (2004)

    Article  CAS  Google Scholar 

  11. Houston, M.R., Howe, R.T., Maboudian, R.: Effect of hydrogen termination on the work of adhesion between rough polycrystalline silicon surfaces. J. Appl. Phys. 81(8), 3474–3483 (1997)

    Article  CAS  Google Scholar 

  12. Asay, D., Dugger, M., Kim, S.: In situ vapor-phase lubrication of MEMS. Tribol. Lett. 29(1), 67–74 (2008)

    Article  CAS  Google Scholar 

  13. Ashurst, W.R., Carraro, C., Maboudian, R.: Vapor phase anti-stiction coatings for MEMS. IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003)

    Article  CAS  Google Scholar 

  14. Potter, C.N.: Hermetic MEMS package and method of manufacture. U.S. Patent No. 7,358,106 B22005. Stellar MicroDevices, Inc., Austin

  15. Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24(1), 155–159 (2007)

    Article  Google Scholar 

  16. Ku, I.S.Y., Reddyhoff, T., Holmes, A.S., Spikes, H.A.: Wear of silicon surfaces in MEMS. Wear 271(7–8), 1050–1058 (2011)

    Article  CAS  Google Scholar 

  17. Ku, I.S.Y., Reddyhoff, T., Wayte, R., Choo, J.H., Holmes, A.S., Spikes, H.A.: Lubrication of microelectromechanical devices using liquids of different viscosities. J. Tribol. 134(1), 012002–012007 (2012)

    Article  Google Scholar 

  18. Reddyhoff, T., Ku, I., Holmes, A., Spikes, H.: Friction modifier behaviour in lubricated MEMS devices. Tribol. Lett. 41(1), 239–246 (2011)

    Article  CAS  Google Scholar 

  19. Keren, D., Ramanathan, G.P., Mehregany, M.: Micromotor dynamics in lubricating fluids. J. Micromech. Microeng. 4(4), 266 (1994)

    Article  Google Scholar 

  20. Mehregany, M., Dhuler, V.R.: Operation of electrostatic micromotors in liquid environments. J. Micromech. Microeng. 2(1), 1 (1992)

    Article  CAS  Google Scholar 

  21. Spikes, H.A.: The half-wetted bearing. Part 1: extended Reynolds equation. Proc. Inst. Mech. Eng. J. Eng. Tribol. 217(1), 1–14 (2003)

    Article  Google Scholar 

  22. Spikes, H.A.: The half-wetted bearing. Part 2: potential application in low load contacts. Proc. Inst. Mech. Eng. J. Eng. Tribol. 217(1), 15–26 (2003)

    Article  Google Scholar 

  23. Choo, J.H., Glovnea, R.P., Forrest, A.K., Spikes, H.A.: A low friction bearing based on liquid slip at the wall. J. Tribol. 129(3), 611–620 (2007)

    Article  Google Scholar 

  24. Choo, J.-H., Forrest, A., Spikes, H.: Influence of organic friction modifier on liquid slip: a new mechanism of organic friction modifier action. Tribol. Lett. 27(2), 239–244 (2007)

    Article  CAS  Google Scholar 

  25. Pit, R., Hervet, H., Léger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85(5), 980–983 (2000)

    Article  CAS  Google Scholar 

  26. Zhu, Y., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87(9), 096105 (2001)

    Article  CAS  Google Scholar 

  27. Venier, C.G., Casserly, E.W.: Multiply-alkylated cyclopentanes (MACs): a new class of synthesized hydrocarbon fluids. Lubr. Eng. 47(7), 586–591 (1991)

    CAS  Google Scholar 

  28. Peterangelo, S.C., Gschwender, L., Snyder, C.E., Jones, W.R., Nguyen, Q., Jansen, M.J.: Improved additives for multiply alkylated cyclopentane-based lubricants. J. Synth. Lubr. 25(1), 31–41 (2008)

    Article  CAS  Google Scholar 

  29. Dube, M.J., Bollea, D., Jones, W.R., Marchetti, M., Jansen, M.J.: A new synthetic hydrocarbon liquid lubricant for space applications. Tribol. Lett. 15(1), 3–8 (2003)

    Article  CAS  Google Scholar 

  30. Ku, I.S.Y., Reddyhoff, T., Choo, J.H., Holmes, A.S., Spikes, H.A.: A novel tribometer for the measurement of friction in MEMS. Tribol. Int. 43(5–6), 1087–1090 (2010)

    Article  CAS  Google Scholar 

  31. Smeeth, M., Spikes, H., Gunsel, S.: Boundary film formation by viscosity index improvers. Tribol. Trans. 39(3), 726–734 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Singapore National Research Foundation under its Competitive Research Program (Award Number: NRF-CRP 2-2007-04). The views expressed herein are those of the authors and are not necessarily those of the Singapore National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Reddyhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, J.Y., Reddyhoff, T., Sinha, S.K. et al. Hydrodynamic Friction Reduction in a MAC–Hexadecane Lubricated MEMS Contact. Tribol Lett 49, 217–225 (2013). https://doi.org/10.1007/s11249-012-0056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0056-z

Keywords

Navigation