Skip to main content
Log in

The Kinetics of Shear-Induced Boundary Film Formation from Dimethyl Disulfide on Copper

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The kinetics of the shear-induced surface-to-bulk transport of methyl thiolate species formed from dimethyl disulfide (DMDS) on a copper surface are explored. It is found that the loss of surface species as a function of the number of rubbing cycles can be modeled by assuming that the adsorbed layer penetrates the subsurface a distance of ~0.7 nm per scan. Adding wear to this model does not improve the fit to the experimental data providing an upper limit for the wear rate of ~0.06 nm/scan. This model is applied to analyzing the depth distribution of sulfur within the subsurface region as a function of the number of rubbing cycles, measured by Auger depth profiling when continually dosing the copper sample with DMDS. It is found that the shape of the experimental depth profile is in agreement with the model developed to analyze the surface-to-bulk transport kinetics of the adsorbed layer. However, the profiles are almost identical for surfaces that have been rubbed 130 and 360 times, so that the surface-to-bulk transport kinetics are self limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Panin, V., Kolubaev, A., Tarasov, S., Popov, V.: Subsurface layer formation during sliding friction. Wear 249(10–11), 860–867 (2001). doi:10.1016/s0043-1648(01)00819-5

    Article  CAS  Google Scholar 

  2. Tarasov, S., Rubtsov, V., Kolubaev, A.: Subsurface shear instability and nanostructuring of metals in sliding. Wear 268(1–2), 59–66 (2010). doi:10.1016/j.wear.2009.06.027

    Article  CAS  Google Scholar 

  3. Moshkovich, A., Perfilyev, V., Lapsker, I., Gorni, D., Rapoport, L.: The effect of grain size on Stribeck curve and microstructure of copper under friction in the steady friction state. Tribol. Lett. 42(1), 89–98 (2011). doi:10.1007/s11249-011-9752-3

    Article  CAS  Google Scholar 

  4. Moshkovich, A., Perfilyev, V., Lapsker, I., Rapoport, L.: Stribeck curve under friction of copper samples in the steady friction state. Tribol. Lett. 37(3), 645–653 (2010). doi:10.1007/s11249-009-9562-z

    Article  CAS  Google Scholar 

  5. Mishra, A., Kad, B.K., Gregori, F., Meyers, M.A.: Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 55(1), 13–28 (2007). doi:10.1016/j.actamat.2006.07.008

    Article  CAS  Google Scholar 

  6. Gubicza, J., Chinh, N.Q., Csanádi, T., Langdon, T.G., Ungár, T.: Microstructure and strength of severely deformed fcc metals. Mater. Sci. Eng. A 462(1–2), 86–90 (2007). doi:10.1016/j.msea.2006.02.455

    Google Scholar 

  7. Zhang, Y.S., Han, Z., Wang, K., Lu, K.: Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260(9–10), 942–948 (2006). doi:10.1016/j.wear.2005.06.010

    Article  CAS  Google Scholar 

  8. Furlong, O.J., Miller, B.P., Li, Z., Walker, J., Burkholder, L., Tysoe, W.T.: The surface chemistry of dimethyl disulfide on copper. Langmuir 26(21), 16375–16380 (2010). doi:10.1021/la101769y

    Article  CAS  Google Scholar 

  9. Furlong, O., Miller, B., Tysoe, W.: Shear-induced surface-to-bulk transport at room temperature in a sliding metal–metal interface. Tribol. Lett. 41(1), 257–261 (2011). doi:10.1007/s11249-010-9711-4

    Article  CAS  Google Scholar 

  10. Furlong, O., Miller, B., Tysoe, W.T.: Shear-induced boundary film formation from dialkyl sulfides on copper. Wear 274–275, 183–187 (2012). doi:10.1016/j.wear.2011.08.022

    Article  Google Scholar 

  11. Thomson, W.: Hydrokinetic solutions and observations, XLVI. Philos. Mag. Ser. 42(281), 362–377 (1871). doi:10.1080/14786447108640585

    Google Scholar 

  12. Helmholtz, H.V.: Über discontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, vol 23, p. 13 (1868)

  13. Kim, H.J., Kim, W.K., Falk, M.L., Rigney, D.A.: MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol. Lett. 28(3), 299–306 (2007). doi:10.1007/s11249-007-9273-2

    Article  Google Scholar 

  14. Emge, A., Karthikeyan, S., Kim, H.J., Rigney, D.A.: The effect of sliding velocity on the tribological behavior of copper. Wear 263, 614–618 (2007). doi:10.1016/j.wear.2007.01.095

    Article  CAS  Google Scholar 

  15. Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267(5–8), 1130–1136 (2009). doi:10.1016/j.wear.2009.01.030

    Article  CAS  Google Scholar 

  16. Karthikeyan, S., Agrawal, A., Rigney, D.A.: Molecular dynamics simulations of sliding in an Fe–Cu tribopair system. Wear 267(5–8), 1166–1176 (2009). doi:10.1016/j.wear.2009.01.032

    Article  CAS  Google Scholar 

  17. Emge, A., Karthikeyan, S., Rigney, D.A.: The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper. Wear 267(1–4), 562–567 (2009). doi:10.1016/j.wear.2008.12.102

    Article  CAS  Google Scholar 

  18. Rigney, D.A., Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39(1), 3–7 (2010). doi:10.1007/s11249-009-9498-3

    Article  Google Scholar 

  19. Herschel, W., Bulkley, R.: Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 39(4), 291–300 (1926). doi:10.1007/bf01432034

    Google Scholar 

  20. Karthikeyan, S., Kim, H.J., Rigney, D.A.: Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95(10), 106001 (2005)

    Google Scholar 

  21. Zhu, T., Li, J., Samanta, A., Kim, H.G., Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Nat. Acad. Sci. 104(9), 3031–3036 (2007). doi:10.1073/pnas.0611097104

    Article  CAS  Google Scholar 

  22. Shen, Y.F., Lu, L., Dao, M., Suresh, S.: Strain rate sensitivity of Cu with nanoscale twins. Scr. Mater. 55(4), 319–322 (2006). doi:10.1016/j.scriptamat.2006.04.046

    Article  CAS  Google Scholar 

  23. Mishra, A., Martin, M., Thadhani, N.N., Kad, B.K., Kenik, E.A., Meyers, M.A.: High-strain-rate response of ultra-fine-grained copper. Acta Mater. 56(12), 2770–2783 (2008). doi:10.1016/j.actamat.2008.02.023

    Article  CAS  Google Scholar 

  24. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006). doi:10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  25. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003). doi:10.1016/s1359-6454(03)00365-3

    Article  CAS  Google Scholar 

  26. Höppel, H.W., May, J., Göken, M.: Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6(9), 781–784 (2004). doi:10.1002/adem.200306582

    Article  Google Scholar 

  27. Gray Iii, G.T., Lowe, T.C., Cady, C.M., Valiev, R.Z., Aleksandrov, I.V.: Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al–4Cu–0.5Zr. Nanostruct. Mater. 9(1–8), 477–480 (1997). doi:10.1016/s0965-9773(97)00104-9

    Article  Google Scholar 

  28. Furlong, O.J., Miller, B.P., Kotvis, P., Tysoe, W.T.: Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces 3(3), 795–800 (2011). doi:10.1021/am101149p

    Article  CAS  Google Scholar 

  29. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31(2), 99–106 (2008). doi:10.1007/s11249-008-9342-1

    Article  Google Scholar 

  30. Hofmann, S., Erlewein, J., Zalar, A.: Depth resolution and surface roughness effects in sputter profiling of NiCr multilayer sandwich samples using Auger electron spectroscopy. Thin Solid Films 43(3), 275–283 (1977). doi:10.1016/0040-6090(77)90289-9

    Article  CAS  Google Scholar 

  31. Hofmann, S.: Quantitative depth profiling in surface analysis: a review. Surf. Interface Anal. 2(4), 148–160 (1980). doi:10.1002/sia.740020406

    Article  CAS  Google Scholar 

  32. Klasson, M., Hedman, J., Berndtsson, A., Nilsson, R., Nordling, C., Melnik, P.: Escape depths of X-ray excited electrons. Phys. Scr. 5(1–2), 93 (1972)

    Article  CAS  Google Scholar 

  33. Steinbruchel, C.: Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy. Appl. Phys. Lett. 55(19), 1960–1962 (1989)

    Article  Google Scholar 

  34. Dienwiebel, M., Pöhlmann, K.: Nanoscale evolution of sliding metal surfaces during running-in. Tribol. Lett. 27(3), 255–260 (2007). doi:10.1007/s11249-007-9216-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Chemistry Division of the National Science Foundation under Grant Number CHE-9213988 and the Office of Naval Research for support of this work. We also thank Professor David Rigney for extremely useful discussions and suggestions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B., Furlong, O. & Tysoe, W.T. The Kinetics of Shear-Induced Boundary Film Formation from Dimethyl Disulfide on Copper. Tribol Lett 49, 39–46 (2013). https://doi.org/10.1007/s11249-012-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0040-7

Keywords

Navigation