Abstract
The kinetics of the shear-induced surface-to-bulk transport of methyl thiolate species formed from dimethyl disulfide (DMDS) on a copper surface are explored. It is found that the loss of surface species as a function of the number of rubbing cycles can be modeled by assuming that the adsorbed layer penetrates the subsurface a distance of ~0.7 nm per scan. Adding wear to this model does not improve the fit to the experimental data providing an upper limit for the wear rate of ~0.06 nm/scan. This model is applied to analyzing the depth distribution of sulfur within the subsurface region as a function of the number of rubbing cycles, measured by Auger depth profiling when continually dosing the copper sample with DMDS. It is found that the shape of the experimental depth profile is in agreement with the model developed to analyze the surface-to-bulk transport kinetics of the adsorbed layer. However, the profiles are almost identical for surfaces that have been rubbed 130 and 360 times, so that the surface-to-bulk transport kinetics are self limiting.




Similar content being viewed by others
References
Panin, V., Kolubaev, A., Tarasov, S., Popov, V.: Subsurface layer formation during sliding friction. Wear 249(10–11), 860–867 (2001). doi:10.1016/s0043-1648(01)00819-5
Tarasov, S., Rubtsov, V., Kolubaev, A.: Subsurface shear instability and nanostructuring of metals in sliding. Wear 268(1–2), 59–66 (2010). doi:10.1016/j.wear.2009.06.027
Moshkovich, A., Perfilyev, V., Lapsker, I., Gorni, D., Rapoport, L.: The effect of grain size on Stribeck curve and microstructure of copper under friction in the steady friction state. Tribol. Lett. 42(1), 89–98 (2011). doi:10.1007/s11249-011-9752-3
Moshkovich, A., Perfilyev, V., Lapsker, I., Rapoport, L.: Stribeck curve under friction of copper samples in the steady friction state. Tribol. Lett. 37(3), 645–653 (2010). doi:10.1007/s11249-009-9562-z
Mishra, A., Kad, B.K., Gregori, F., Meyers, M.A.: Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 55(1), 13–28 (2007). doi:10.1016/j.actamat.2006.07.008
Gubicza, J., Chinh, N.Q., Csanádi, T., Langdon, T.G., Ungár, T.: Microstructure and strength of severely deformed fcc metals. Mater. Sci. Eng. A 462(1–2), 86–90 (2007). doi:10.1016/j.msea.2006.02.455
Zhang, Y.S., Han, Z., Wang, K., Lu, K.: Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260(9–10), 942–948 (2006). doi:10.1016/j.wear.2005.06.010
Furlong, O.J., Miller, B.P., Li, Z., Walker, J., Burkholder, L., Tysoe, W.T.: The surface chemistry of dimethyl disulfide on copper. Langmuir 26(21), 16375–16380 (2010). doi:10.1021/la101769y
Furlong, O., Miller, B., Tysoe, W.: Shear-induced surface-to-bulk transport at room temperature in a sliding metal–metal interface. Tribol. Lett. 41(1), 257–261 (2011). doi:10.1007/s11249-010-9711-4
Furlong, O., Miller, B., Tysoe, W.T.: Shear-induced boundary film formation from dialkyl sulfides on copper. Wear 274–275, 183–187 (2012). doi:10.1016/j.wear.2011.08.022
Thomson, W.: Hydrokinetic solutions and observations, XLVI. Philos. Mag. Ser. 42(281), 362–377 (1871). doi:10.1080/14786447108640585
Helmholtz, H.V.: Über discontinuierliche Flüssigkeits-Bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, vol 23, p. 13 (1868)
Kim, H.J., Kim, W.K., Falk, M.L., Rigney, D.A.: MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol. Lett. 28(3), 299–306 (2007). doi:10.1007/s11249-007-9273-2
Emge, A., Karthikeyan, S., Kim, H.J., Rigney, D.A.: The effect of sliding velocity on the tribological behavior of copper. Wear 263, 614–618 (2007). doi:10.1016/j.wear.2007.01.095
Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267(5–8), 1130–1136 (2009). doi:10.1016/j.wear.2009.01.030
Karthikeyan, S., Agrawal, A., Rigney, D.A.: Molecular dynamics simulations of sliding in an Fe–Cu tribopair system. Wear 267(5–8), 1166–1176 (2009). doi:10.1016/j.wear.2009.01.032
Emge, A., Karthikeyan, S., Rigney, D.A.: The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper. Wear 267(1–4), 562–567 (2009). doi:10.1016/j.wear.2008.12.102
Rigney, D.A., Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39(1), 3–7 (2010). doi:10.1007/s11249-009-9498-3
Herschel, W., Bulkley, R.: Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 39(4), 291–300 (1926). doi:10.1007/bf01432034
Karthikeyan, S., Kim, H.J., Rigney, D.A.: Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95(10), 106001 (2005)
Zhu, T., Li, J., Samanta, A., Kim, H.G., Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Nat. Acad. Sci. 104(9), 3031–3036 (2007). doi:10.1073/pnas.0611097104
Shen, Y.F., Lu, L., Dao, M., Suresh, S.: Strain rate sensitivity of Cu with nanoscale twins. Scr. Mater. 55(4), 319–322 (2006). doi:10.1016/j.scriptamat.2006.04.046
Mishra, A., Martin, M., Thadhani, N.N., Kad, B.K., Kenik, E.A., Meyers, M.A.: High-strain-rate response of ultra-fine-grained copper. Acta Mater. 56(12), 2770–2783 (2008). doi:10.1016/j.actamat.2008.02.023
Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006). doi:10.1016/j.pmatsci.2005.08.003
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003). doi:10.1016/s1359-6454(03)00365-3
Höppel, H.W., May, J., Göken, M.: Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6(9), 781–784 (2004). doi:10.1002/adem.200306582
Gray Iii, G.T., Lowe, T.C., Cady, C.M., Valiev, R.Z., Aleksandrov, I.V.: Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al–4Cu–0.5Zr. Nanostruct. Mater. 9(1–8), 477–480 (1997). doi:10.1016/s0965-9773(97)00104-9
Furlong, O.J., Miller, B.P., Kotvis, P., Tysoe, W.T.: Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces 3(3), 795–800 (2011). doi:10.1021/am101149p
Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31(2), 99–106 (2008). doi:10.1007/s11249-008-9342-1
Hofmann, S., Erlewein, J., Zalar, A.: Depth resolution and surface roughness effects in sputter profiling of NiCr multilayer sandwich samples using Auger electron spectroscopy. Thin Solid Films 43(3), 275–283 (1977). doi:10.1016/0040-6090(77)90289-9
Hofmann, S.: Quantitative depth profiling in surface analysis: a review. Surf. Interface Anal. 2(4), 148–160 (1980). doi:10.1002/sia.740020406
Klasson, M., Hedman, J., Berndtsson, A., Nilsson, R., Nordling, C., Melnik, P.: Escape depths of X-ray excited electrons. Phys. Scr. 5(1–2), 93 (1972)
Steinbruchel, C.: Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy. Appl. Phys. Lett. 55(19), 1960–1962 (1989)
Dienwiebel, M., Pöhlmann, K.: Nanoscale evolution of sliding metal surfaces during running-in. Tribol. Lett. 27(3), 255–260 (2007). doi:10.1007/s11249-007-9216-y
Acknowledgments
We gratefully acknowledge the Chemistry Division of the National Science Foundation under Grant Number CHE-9213988 and the Office of Naval Research for support of this work. We also thank Professor David Rigney for extremely useful discussions and suggestions during the course of this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miller, B., Furlong, O. & Tysoe, W.T. The Kinetics of Shear-Induced Boundary Film Formation from Dimethyl Disulfide on Copper. Tribol Lett 49, 39–46 (2013). https://doi.org/10.1007/s11249-012-0040-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11249-012-0040-7


