Skip to main content
Log in

Morphological, Electrical, and Chemical Changes in Cyclically Contacting Polycrystalline Silicon Surfaces Coated with Perfluoroalkylsilane Self-Assembled Monolayer

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The evolution of morphology, electrical properties, and chemical composition has been studied in cyclically contacting polycrystalline silicon (polysilicon) surfaces coated with perfluoroalkylsilane self-assembled monolayer (SAM). The microinstrument used is a MEMS cantilever that is repeatedly actuated out-of-plane to impact a landing pad and is then moved in-plane to enable nondestructive in situ inspection of the impacted area. Analyses show that a device with a monolayer coating exhibits signs of surface degradation after a much higher number of cycles than its uncoated counterpart. A sharp increase in contact resistance between the cantilever and landing pad is observed at ~10 billion cycles for a coated device, versus ~25 million cycles for an uncoated device. Likewise, the onset of grain fracture in the landing pad occurs at ~25 billion cycles for the SAM-coated device, versus ~3 billion cycles for its uncoated counterpart. The effectiveness of the monolayer coating diminishes after more than 100 billion contact cycles as the SAM layer is removed, and the polysilicon substrate becomes susceptible to adhesive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maboudian, R., Carraro, C.: Surface chemistry and tribology of MEMS. Annu. Rev. Phys. Chem. 55, 35 (2004)

    Article  CAS  Google Scholar 

  2. Maboudian, R., Ashurst, W.R., Carraro, C.: Tribological challenges in micromechanical systems. Tribol. Lett. 12, 95–100 (2002)

    Article  Google Scholar 

  3. Romig, A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837–5866 (2003)

    Article  CAS  Google Scholar 

  4. de Boer, M.P., Mayer, T.M.: Tribology of MEMS. MRS Bull. 26, 302–304 (2001)

    Article  Google Scholar 

  5. Komvopoulos, K.: Surface engineering and microtribology for microelectromechanical systems. Wear 200, 305–327 (1996)

    Article  CAS  Google Scholar 

  6. Liu, F., Laboriante, I., Bush, B., Roper, C.S., Carraro, C., Maboudian, R.: 2-Axis MEMS deflecting cantilever microinstrument for in situ reliability studies. 15th International Conference on Solid-State Sensors, Actuators and Microsystems. Transducers 2009, Denver, CO, USA, 21–25 June 2009, pp. 1521–1524

  7. Liu, F., Laboriante, I., Bush, B., Roper, C.S., Carraro, C., Maboudian, R.: In situ studies of interfacial contact evolution via a 2-axis deflecting cantilever microinstrument. Appl. Phys. Lett. 95, 131902 (2009)

    Article  Google Scholar 

  8. Hook, D.A., Timpe, S.J., Dugger, M.T., Krim, J.: Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding contact. J. Appl. Phys. 104, 034303-1–034303-6 (2008)

    Article  Google Scholar 

  9. Bhushan, B., Kasai, T., Kulik, G., Barbieri, L., Hoffmann, P.: AFM study of perfluoroalkylsilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS. Ultramicroscopy 105, 176–188 (2005)

    Article  CAS  Google Scholar 

  10. Cichomski, M., Grobelny, J., Celichowski, G.: Preparation and tribological tests of thin fluoroorganic films. Appl. Surf. Sci. 254, 4273–4278 (2008)

    Article  CAS  Google Scholar 

  11. Singh, R.A., Kim, J., Yang, S.W., Oh, J.E., Yoon, E.S.: Tribological properties of trichlorosilane-based one- and two-component self-assembled monolayers. Wear 265, 42–48 (2008)

    Article  CAS  Google Scholar 

  12. Chang, X., Jones, R.L., Batteas, J.D.: Dynamic variations in adhesion of self-assembled monolayers on nanoasperities probed by atomic force microscopy. Scanning 30, 106–117 (2008)

    Article  Google Scholar 

  13. Guo, L.-Y., Zhao, Y.-P.: Effect of chain length of self-assembled monolayers on adhesion force measurement by AFM. J. Adhes. Sci. Technol. 20, 1281–1293 (2006)

    Article  CAS  Google Scholar 

  14. Liu, H.W., Bhushan, B.: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus. J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Article  CAS  Google Scholar 

  15. Ding, J.N., Wong, P.L., Yang, J.C.: Friction and fracture properties of polysilicon coated with self-assembled monolayers. Wear 260, 209–214 (2006)

    Article  CAS  Google Scholar 

  16. Miller, B.P., Theodore, N.D., Brukman, M.J., Wahl, K.J., Krim, J.A.: Nano- to macroscale tribological study of PFTS and TCP lubricants for Si MEMS applications. Tribol. Lett. 38, 69–78 (2010)

    Article  CAS  Google Scholar 

  17. Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators A 82, 219–223 (2000)

    Article  Google Scholar 

  18. Mayer, T.M., de Boer, M.P., Shinn, N.D., Clews, P.J., Michalske, T.A.: Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems. J. Vac. Sci. Technol. B 18, 2433–2440 (2000)

    Article  CAS  Google Scholar 

  19. Ashurst, W.R., Yau, C., Carraro, C., Maboudian, R., Dugger, M.T.: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlosilane self-assembled monolayer. J. Microelectromech. Syst. 10, 41–49 (2001)

    Article  CAS  Google Scholar 

  20. Patton, S.T., Cowan, W.D., Eapen, K.C., Zabinski, J.S.: Effect of surface chemistry on the tribological performance of a MEMS electrostatic lateral output motor. Tribol. Lett. 9, 199–209 (2001)

    Article  Google Scholar 

  21. Herrmann, C.F., Delrio, F.W., Bright, V.M., George, S.M.: Conformal hydrophobic coatings prepared using atomic layer deposition seed layers and non-chlorinated hydrophobic precursors. J. Micromech. Microeng. 15, 984–992 (2005)

    Article  CAS  Google Scholar 

  22. Flater, E.E., Corwin, A.D., de Boer, M.P., Carpick, R.W.: In situ wear studies of surface micromachined interfaces subject to controlled loading. Wear 260, 580–593 (2006)

    Article  CAS  Google Scholar 

  23. Yu, T., Ranganathan, R., Johnson, N., Yadav, N., Gale, R., Dallas, T.: In situ characterization of induced stiction in a MEMS. J. Microelectromech. Syst. 16, 355–364 (2007)

    Article  Google Scholar 

  24. Patton, S.T., Eapen, K.C., Zabinski, J.S., Sanders, J.H., Voevodin, A.A.: Lubrication of microelectromechanical systems radio frequency switch contacts using self-assembled monolayers. J. Appl. Phys. 102, 024903/1–5 (2007)

    Google Scholar 

  25. Fréchette, J., Maboudian, R., Carraro, C.: Effect of temperature on in-use stiction of cantilever beams coated with perfluorinated alkysiloxane monolayers. J. Microelectromech. Syst. 15, 737–744 (2006)

    Article  Google Scholar 

  26. Tas, N.R., Gui, C., Elwenspoek, M.: Static friction in elastic adhesion contacts in MEMS. J. Adhes. Sci. Technol. 17, 547–561 (2003)

    Article  CAS  Google Scholar 

  27. Henck, S.: Lubrication of digital micromirror devices. Tribol. Lett. 3, 239–247 (1997)

    Article  CAS  Google Scholar 

  28. Laboriante, I., Bush, B., Lee, D., Liu, F., King-Liu, T.-J., Carraro, C., Maboudian, R.: Interfacial adhesion between rough surfaces of polycrystalline silicon and its implications for M/NEMS technology. J. Adhes. Sci. Technol. 24, 2545–2556 (2010)

    Article  CAS  Google Scholar 

  29. Hayashi, K., Saito, N., Sugimura, H., Takai, O., Nakagiri, N.: Surface potential contrasts between silicon surfaces covered and uncovered with an organosilane self-assembled monolayer. Ultramicroscopy 91, 151–156 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nathan Klejwa of Stanford University for the assistance in the AES analysis conducted at Stanford Nanocharacterization Laboratory. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program under grant no. N66001-10-1-4004 issued by the Space and Naval Warfare Systems Center Pacific (SPAWAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Maboudian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laboriante, I., Fisch, M., Payamipour, A. et al. Morphological, Electrical, and Chemical Changes in Cyclically Contacting Polycrystalline Silicon Surfaces Coated with Perfluoroalkylsilane Self-Assembled Monolayer. Tribol Lett 44, 13–17 (2011). https://doi.org/10.1007/s11249-011-9821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9821-7

Keywords

Navigation