Skip to main content

Overcoat Free Magnetic Media for Lower Magnetic Spacing and Improved Tribological Properties for Higher Areal Densities


Surface modification with shallow embedding (≤1 nm) of carbon in the top layer of magnetic media is evaluated for its tribological and anti-oxidation properties. Cobalt is used as the magnetic material and carbon embedding is achieved by using the filtered cathodic vacuum arc technique at different ion energies, specifically of 20, 90, and 350 eV, in order to study the effect of ion energy on the embedding profiles. Simulations using the transport of ions in Matter software and X-ray photoelectron spectroscopy (XPS) are used to characterize the embedded layer and their surface chemical composition. XPS and transmission electron microscopy depth profiling results confirm the presence of a shallow mixed layer of carbon and cobalt for all three types of ion energies tested. However, embedding carried out at the ion energy of 90 eV produced a more uniform overcoat free mixed layer (≤1 nm) with improved anti-oxidation properties. Ball-on-disk wear tests and atomic force microscopy based scratch tests are conducted on the bare cobalt and modified cobalt surfaces. It is observed that the wear life and scratch resistance of the cobalt surface improved considerably after surface modification at the ion energy of 90 eV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Wallace, R.L.: The reproduction of magnetically recorded signal. Bell Syst. Tech. J. 30, 1145–1173 (1951)

    Google Scholar 

  2. Robertson, J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81–88 (2001)

    Article  CAS  Google Scholar 

  3. Zhang, H.-S., Komvopoulos, K.: Surface modification of magnetic recording by filtered cathodic vacuum arc. J. Appl. Phys. 106, 093504–093511 (2009)

    Article  Google Scholar 

  4. Anders, A., Fong, W., Kulkarni, A., Ryan, F.W., Bhatia, C.S.: Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs. IEEE Trans. Plasma Sci. 29, 768–775 (2001)

    Article  CAS  Google Scholar 

  5. Zhang, H.-S., Komvopoulos, K.: Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc. J. Appl. Phys. 105, 083305–083312 (2009)

    Article  Google Scholar 

  6. Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager III, J.W., Brown, G., Bhatia, C.S., Robertson, D.J.: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779–781 (1996)

    Article  CAS  Google Scholar 

  7. Lifshitz, Y., Kasai, S.R., Rabalais, J.W., Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990)

    Article  CAS  Google Scholar 

Download references


This work is supported by the Singapore NRF under CRP Award No. NRF-CRP 4-2008-06.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. S. Bhatia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Samad, M.A., Rismani, E., Yang, H. et al. Overcoat Free Magnetic Media for Lower Magnetic Spacing and Improved Tribological Properties for Higher Areal Densities. Tribol Lett 43, 247–256 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Magnetic data storage
  • Nanotribology
  • Magnetic data disks
  • Surface modification
  • Cobalt