Skip to main content
Log in

A Follow-up Study on Bauschinger’s Effect in Bidirectional Wear of Cu-40%Zn against Different Types of Counter-Face

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Previously, we demonstrated a decrease in wear loss of Cu-40%Zn against a steel wheel during bidirectional sliding ascribed to Bauschinger’s effect associated with diminished strain-hardening. However, the situation changed when the alloy was worn by a ceramic-grinding wheel. It was observed that the mass loss continuously increased with reversal of the sliding-direction although the corresponding hardness of worn surface also decreased. In this case, Bauschinger effect still functioned but the failure mode varied, leading to the different trend of response to wear against the ceramic-grinding wheel in comparison with that against the steel counter-face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bauschinger, J.: Ueber die Veränderung der Elasticitätsgrenze und des Elasticitätsmoduls verschiedener Metalle. Civilingenieur 27, 289–348 (1881)

    Google Scholar 

  2. Sowerby, R., Uko, D.K.: A review of certain aspects of the Bauschinger effect in metals. Mater. Sci. Eng. 41, 43–58 (1979)

    Article  CAS  Google Scholar 

  3. Bate, P.S., Wilson, D.V.: Analysis of the Bauschinger effect. Acta Mater. 34, 1097–1105 (1986)

    Article  CAS  Google Scholar 

  4. Daniel, R.C., Horne, G.T.: The Bauschinger effect and cyclic hardening in copper. Metal. Mater. Trans B 2, 1161–1172 (1971)

    CAS  Google Scholar 

  5. Boger, R.K., Wagoner, R.H., Barlat, F., Lee, M.G., Chung, K.: Continuous, large strain, tension/compression testing of sheet material. Int. J. Plast. 21, 2319–2343 (2005)

    Article  CAS  Google Scholar 

  6. Kuwabara, T., Kumano, Y., Ziegelheim, J., Kurosaki, I.: Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior. Int. J. Plast. 25, 1759–1776 (2009)

    Article  CAS  Google Scholar 

  7. Tan, Z., Magnusson, C.: The bauschinger effect in compression-tension of sheet metals. Mater. Sci. Eng. A. 183, 31–38 (1994)

    Article  Google Scholar 

  8. Abel, A.: Historical perspectives and some of the main features of the Bauschinger effect. Mater. Forum 10, 11–26 (1987)

    CAS  Google Scholar 

  9. Brown, L.M.: Dislocation plasticity in persistent slip bands. Mater. Sci. and Eng. A 285, 35–42 (2000)

    Article  Google Scholar 

  10. Srivatsan, T.S.: The low-cycle fatigue and cyclic fracture behaviour of 7150 aluminium alloy. Int. J. Fatigue 13, 313–321 (1991)

    Article  CAS  Google Scholar 

  11. Srivatsan, T.S., Hoff, T.: The high strain cyclic fatigue and fracture behaviour of 2090 aluminum alloy. Eng. Fract. Mech. 40, 297–309 (1991)

    Article  Google Scholar 

  12. Maier, H.J., Renner, H., Mughrabi, H.: Local lattice-parameter measurements in cyclically deformed copper by convergent-beam electron-diffraction. Ultramicroscopy 51, 136–145 (1991)

    Article  Google Scholar 

  13. Hecker, M., Thiele, E., Holste, C.: X-ray diffraction analysis of internal stresses in the dislocation structure of cyclically deformed nickel single crystals. Mater. Sci. Eng. A 234, 806–809 (1997)

    Article  Google Scholar 

  14. Yue, L., Zhang, H., Li, D.Y.: A molecular dynamics study of nano twined copper under two-directional sliding. Scripta Mater. 63, 1116–1119 (2010)

    Article  CAS  Google Scholar 

  15. Stewart, D., Cheong, K.S.: Molecular dynamics simulations of dislocations and nanocrystals. Curr. Appl. Phys. 8, 494–497 (2008)

    Article  Google Scholar 

  16. Wu, P., Xu, X., Rengarajan, V., Zwiebackb, I.: Propagation and density reduction of threading dislocations in SiC crystals during sublimation growth silicon carbide 2008. Mater. Process. Devices 1069, 83–88 (2008)

    Google Scholar 

  17. Nye, J.F.: Unfolding higher-order wave dislocation clusters and catastrophe theory. J. Opt. A Pure Appl. Opt. 10, 075010 (2008)

    Article  Google Scholar 

  18. Fang, H., Horstemeyer, M.F., Baskes, M.I., Solanki, K.: Atomistic simulations of Bauschinger effects of metals with high angle and low angle grain boundaries. Comput. Methods Appl. Mech. Eng. 193, 1789–1802 (2004)

    Article  Google Scholar 

  19. Tang, C.Y., Li, D.Y., Wen, G.W.: Bauschinger’s effect in wear of materials. Tribol. Lett. 41, 569–572 (2011)

    Article  CAS  Google Scholar 

  20. Finkin, E.F.: Speculations on the theory of adhesive wear. Wear 21, 103–114 (1972)

    Article  Google Scholar 

  21. Pacchioni, G., Rosch, N.: Supported nickel and copper clusters on MgO(100): a first-principles calculation on the metal/oxide interface. J. Chem. Phys. 104, 7329–7337 (1996)

    Article  CAS  Google Scholar 

  22. Sahoo, Prasanta: Adhesive friction for elastic–plastic contacting rough surfaces considering asperity interaction. J. Phys. D Appl. Phys. 39, 2809–2818 (2006)

    Article  CAS  Google Scholar 

  23. Alpas, A.T., Zhang, J.: Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites metal. Mater. Trans. A 25, 969–983 (1994)

    Article  Google Scholar 

  24. Schwarz, K.W.: Simulation of dislocations on the mesoscopic scale. I. Methods and examples. J. Appl. Phys. 85, 108–119 (1999)

    Article  CAS  Google Scholar 

  25. Dewit, G., Koehler, J.S.: Interaction of dislocations with an applied stress in anisotropic crystals. Phys. Rev. 116, 1113–1120 (1959)

    Article  CAS  Google Scholar 

  26. Schwarz, K.W., Tu, Y.: Dislocation-interaction-based model of strained-layer relaxation. J. Appl. Phys. 106, 083510 (2009)

    Article  Google Scholar 

  27. Zhang, Z.F., Wang, Z.G.: Relationship between the fatigue cracking probability and the grain-boundary category Philos. Mag. Lett. 80, 483–488 (2000)

    Article  CAS  Google Scholar 

  28. Bjerken, C., Melin, S.: A study of the influence of grain boundaries on short crack growth during varying load using a dislocation technique. Eng. Fract. Mech. 71, 2215–2227 (2004)

    Article  Google Scholar 

  29. Shi, J., Zikry, M.A.: Grain-boundary interactions and orientation effects on crack behavior in polycrystalline aggregates. Int. J. Solid. Struct. 46, 3914–3925 (2009)

    Article  CAS  Google Scholar 

  30. Wang, N., Wang, Z.R., Aust, K.T., Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metal. Mater. 43, 519–528 (1995)

    Article  CAS  Google Scholar 

  31. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Article  CAS  Google Scholar 

  32. Armstrong, R.W.: From {110} cracking in MgO to model strength evaluations. Mater. Sci. Eng. A 409, 24–31 (2005)

    Article  Google Scholar 

  33. Paidar, V.: Sliding mechanism of FCC/BCC interphase boundaries. Mater. Sci. Forum 294, 637–640 (1999)

    Article  Google Scholar 

  34. Rabinowicz, E.: Friction and wear of materials, 2nd edn. John Wiley & Sons Inc, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, C., Li, D.Y. & Wen, G.W. A Follow-up Study on Bauschinger’s Effect in Bidirectional Wear of Cu-40%Zn against Different Types of Counter-Face. Tribol Lett 43, 101–106 (2011). https://doi.org/10.1007/s11249-011-9790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9790-x

Keywords

Navigation