Skip to main content

Advertisement

Log in

Tribological Properties of Vegetable Oils Modified by Reaction with Butanethiol

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Corn, canola, and castor-lauric estolide oils were chemically modified by photochemical direct reaction of butanethiol with the double bonds on the hydrocarbon chains. The effect of chemical modifications on viscosity, viscosity index (VI), pour point (PP), cloud point (CP), oxidation stability (RPVOT), 4-ball anti-wear (AW), and extreme pressure (EP) were investigated. The sulfide modified (SM) corn and canola oils showed increased viscosity, increased RPVOT time (more than one order of magnitude), reduced PP (9–18 °C), and reduced VI. The SM estolide displayed similar trends in VI and RPVOT but showed no change in viscosity or cold flow. The SM oils, along with commercial mono- and polysulfide additives were also investigated as additives, at 0.6% (w/w) S concentration, in corn and polyalphaolefin (PAO) base fluids. In both fluids, the additives resulted in minor changes of PP, CP, coefficient of friction, wear scar diameter (WSD), and weld point (WP). Only the commercial polysulfide EP additive displayed large WP increases in the fluids. The additives resulted in no change of oxidation stability of corn oil, but displayed big improvement in the oxidation stability of PAO (8 to 16-fold increase in RPVOT time). The difference in the effect of the additives on the oxidation stability of PAO versus corn oil was attributed to the difference in the reactive hydrogen contents in the two base fluids relative to those in the additives. An empirical equation, for correlating change in RPVOT time with change in bond dissociation energy of reactive protons before and after chemical modification, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bremmer, B.J., Plonsker, L.: Bio-based lubricants: a market opportunity study update. Omni-Tech International (Prepared for the United Soybean Board, November 2008)

  2. McCoy, S.: The development of an engine lubricant containing soybean oil. M. Sc. Thesis. University of Kentucky, College of Engineering (2007)

  3. Fox, N.J., Stachowiak, G.W.: Vegetable oil-based lubricants—a review of oxidation. Tribol Int 40, 1035–1046 (2007)

    Article  CAS  Google Scholar 

  4. Jayadas, N.H., Nair, K.P.: Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal oxidative and low temperature properties. Tribol Int 39, 873–878 (2006)

    Article  CAS  Google Scholar 

  5. Lockwood, F.E., Dotson, O.J., Smith, D.B.: Formulating and testing of engine oils with bio-content. In: AOCS-STLE Conference on Bio-based Technologies, Cincinnati, OH, 13–18 Oct 2008

  6. Cermak, S., Isbell, T.: Estolides—the next biobased functional fluids. Inform 15(8), 515–517 (2004)

    Google Scholar 

  7. Schneider, M.P.: Government-Industry Forum on Non-Food Uses of Crops (GIFNFC 7/7). Case Study: Plant Oil based Lubricants in Total Loss & Potential Loss Applications. Final Report. University of York, pp. 1–54 (2002)

  8. Knowlton, S.: DuPont technology status report: high oleic soybean oil. In: Proceedings of United Soybean Board Technical Advisory Panel: Lubricants and Fluids, 24 and 25 Oct 2007 [CDROM]

  9. Biresaw, G., Adhvaryu, A., Erhan, S.Z., Carriere, C.J.: Friction and adsorption properties of normal and high-oleic soybean oils. J. Am. Oil Chem. Soc. 79(1), 53–58 (2008)

    Article  Google Scholar 

  10. Hiemenz, P.C.: Principles of Colloid and Surface Chemistry, 2nd edn. Marcel Dekker, New York (1986)

    Google Scholar 

  11. Bockish, M.: Fats and Oils Handbook. AOCS Press, Champaign, IL (1998)

    Google Scholar 

  12. O’Brien, R.D.: Fats and Oils. Technomic, Lancaster, PA (1998)

    Google Scholar 

  13. Fox, N.J., Simpson, A.K., Stachowiak, G.W., Polishuk, A.T.: Oxidation stability of vegetable oil formulations. NLGI Spokesman 65(8), 32–33 (2001)

    CAS  Google Scholar 

  14. Miles, P.: Synthetics versus vegetable oils: applications options and performance. J. Synth. Lubr. 15, 43–52 (1998)

    Article  CAS  Google Scholar 

  15. Becker, R., Knorr, A.: An evaluation of antioxidants for vegetable oils at elevated temperatures. Lubr. Sci. 8(2), 95–117 (1996)

    Article  CAS  Google Scholar 

  16. Adhvaryu, A., Erhan, S.Z., Liu, Z.S., Perez, J.M.: Oxidation kinetics of oils derived from unmodified and genetically modified vegetables using PDSC and NMR spectroscopy. Thermochim. Acta 364(1–2), 87–97 (2000)

    Article  CAS  Google Scholar 

  17. Billenstein, S., Blaschke, G.: Industrial production of fatty amines and their derivatives. J. Am. Oil Chem. Soc. 61(2), 353–356 (1984)

    CAS  Google Scholar 

  18. Isbell, T.A., Kleiman, R., Plattner, B.A.: Acid-catalyzed condensation of oleic acid into estolides and polyestolides. J. Am. Oil Chem. Soc. 71, 169–174 (1994)

    Article  CAS  Google Scholar 

  19. Dahlke, B., Hellbardi, S., Paetow, M., Zech, W.H.: Polyhydroxy fatty acids and their derivatives from plant oils. J. Am. Oil Chem. Soc. 72(3), 349–353 (1995)

    Article  CAS  Google Scholar 

  20. Dunn, R.O., Knothe, G., Bagby, M.O.: Recent advances in the development of alternative diesel fuels from vegetable oils and animal fats. Recent Res. Dev. Oil Chem. 1, 31–56 (1997)

    CAS  Google Scholar 

  21. Biermann, U., Friedt, W., Lang, S., Lürs, W., Machmüller, G., Metzger, J.O., Rüschgen, K.M.R., Schäfer, H.J., Schneider, M.P.: New syntheses with oils and fats as renewable feedstock for the chemical industry. Angew. Chem. Int. Ed. 39, 2206–2224 (2000)

    Article  CAS  Google Scholar 

  22. Erhan, S.Z., Adhvaryu, A., Sharma, B.K.: Chemically functionalized vegetable oils. In: Rudnick, L.R. (ed.) Synthetics, Mineral Oils, and Biobased Lubricants, pp. 361–387. CRC Press, Boca Raton, FL (2006)

    Google Scholar 

  23. Schneider, M.P.: Plant-oil-based lubricants and hydraulic fluids. J. Sci. Food Agric. 86, 1769–1780 (2006)

    Article  CAS  Google Scholar 

  24. Graiver, D., Narayan, R.: Value-added chemicals from catalytic ozonation of vegetable oils. Lipid Technol. 18(2), 31–35 (2006)

    CAS  Google Scholar 

  25. Meier, M.A.R., Metzger, J.O., Schubert, U.S.: Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 36, 1788–1802 (2007)

    Article  CAS  Google Scholar 

  26. Biswas, A., Sharma, B.K., Willet, J.L., Erhan, S.Z., Cheng, H.N.: Soybean oil as a renewable feedstock for nitrogen-containing derivatives. Energy Environ. Sci. 1(6), 639–644 (2008)

    Article  CAS  Google Scholar 

  27. Cermak, S.C., Brandon, K.B., Isbell, T.A.: Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind. Crops Prod. 23, 54–64 (2006)

    Article  CAS  Google Scholar 

  28. Adachi, S., Ishiguro, T., Matsuno, R.: Autoxidation kinetics for fatty acids and their esters. J. Am. Oil Chem. Soc. 72(5), 547–551 (1995)

    Article  CAS  Google Scholar 

  29. Ishido, E., Minemoto, Y., Adachi, S., Matsuno, R.: Oxidation of linoleic acid and methyl linoleate mixed with saturated fatty acid or its methyl ester. Lebensm-Wiss u-Technol 34, 234–238 (2001)

    Article  CAS  Google Scholar 

  30. Minemoto, Y., Adachi, S., Shimada, Y., Nagao, T., Iwata, T., Yamauchi-Sato, Y., Yamamato, T., Kometani, T., Matsuno, R.: Oxidation kinetics for cis-9 trans-11 and trans-10 cis-12 isomers of CLA. J. Am. Oil Chem. Soc. 80(7), 675–678 (2003)

    Article  CAS  Google Scholar 

  31. Minemoto, Y., Kometani, T., Piao, J., Adachi, S.: Oxidation of oleoyl residue of its esters with ethylene glycol glycerol and erythritol. LWT Food Sci. Technol. 39(1), 1–5 (2006)

    Article  CAS  Google Scholar 

  32. Sakuramoto, Y., Shima, M., Adachi, S.: Autoxidation of mono- di- and trilinoleoyl glycerols at different concentrations. Biosci. Biotechnol. Biochem. 71(3), 803–806 (2007)

    Article  CAS  Google Scholar 

  33. Koh, C.S., Butt, J.B.: Experimental and modeling study of kinetics and selectivity in the oxidation of a poly(α-olefin) lubricant. Ind. Eng. Chem. Res. 34, 524–535 (1995)

    Article  CAS  Google Scholar 

  34. Kowalski, B.: Determination of oxidative stability of edible vegetable oils by pressure differential scanning calorimetry. Thermochim. Acta 156(2), 347–358 (1989)

    Article  CAS  Google Scholar 

  35. Bala, V., Hartley, R.J., Hughes, L.J.: The influence of chemical structure on the oxidative stability of organic sulfides. Lubr. Eng. 52(12), 868–873 (1996)

    CAS  Google Scholar 

  36. Adhvaryu, A., Sharma, B.K., Hwang, H.S., Erhan, S.Z., Perez, J.M.: Development of bio-based synthetic fluids: application of molecular modeling to structure-physical property relationship. Ind. Eng. Chem. Res. 45, 928–933 (2006)

    Article  CAS  Google Scholar 

  37. Isbell, T.A., Abbott, T.P., Carlson, K.D.: Oxidative stability index of vegetable oils in binary mixtures with meadowfoam oil. Ind. Crop Prod. 9(2), 115–123 (1999)

    Article  CAS  Google Scholar 

  38. Knothe, G., Dunn, R.O.: Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J. Am. Oil Chem. Soc. 80(10), 1021–1026 (2003)

    Article  CAS  Google Scholar 

  39. Knothe, G.: Structure indices in FA chemistry. How relevant is the iodine value? J. Am. Oil Chem. Soc. 79(9), 847–854 (2002)

    Article  CAS  Google Scholar 

  40. Moser, B.R., Sharma, B.K., Doll, K.M., Erhan, S.Z.: Diesters from oleic acid: synthesis, low temperature properties and oxidation stability. J. Am. Oil Chem. Soc. 84, 675–680 (2007)

    Article  CAS  Google Scholar 

  41. Chen, C.J., Bozzelli, J.W.: Kinetic analysis for HO2 addition to ethylene propene and isobutene and thermochemical parameters of alkyl hydroperoxides and hydroperoxide alkyl radicals. J Phys Chem A 104, 4997–5012 (2000)

    Article  CAS  Google Scholar 

  42. Gschwender, L.: Computational chemistry of soluble additives for perfluoropolyalkylether liquid lubricants. Tribol. Trans. 39(2), 368–373 (1996)

    Article  CAS  Google Scholar 

  43. Pfaendtner, J., Broadbelt, L.J.: Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 47(9), 2886–2896 (2008)

    Article  CAS  Google Scholar 

  44. Pfaendtner, J., Broadbelt, L.J.: Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. Ind. Eng. Chem. Res. 47(9), 2897–2904 (2008)

    Article  CAS  Google Scholar 

  45. Przybylski, R., Zambiazi, R.C.: Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components. J. Am. Oil Chem. Soc. 77(9), 925–931 (2000)

    Article  CAS  Google Scholar 

  46. Siniawski, M.T., Saniel, N., Pfaendtner, J.: Tribological degradation of two vegetable-based lubricants at elevated temperature. J. Synth. Lubr. 24, 167–179 (2007)

    Article  CAS  Google Scholar 

  47. Zabarnick, S., Phelps, D.K.: Density functional theory calculations of the energetics and kinetics of jet fuel autoxidation reactions. Energy Fuels 20, 488–497 (2006)

    Article  CAS  Google Scholar 

  48. Buffa, F., Borrajo, J.: Miscibility of styrene/unsaturated polyester quasibinary systems: unsaturated polyester chemical composition and molecular weight influence. J. Appl. Polym. Sci. 102(6), 6064–6073 (2006)

    Article  CAS  Google Scholar 

  49. Garas, G., Kosmas, M.: Effect of chain architecture on the cloud point curves of binary blends of star polymers. Macromolecules 27(22), 6671–6672 (1994)

    Article  CAS  Google Scholar 

  50. Kim, J.K., Lee, H.H., Son, W.H., Han, D.C.: Phase behavior and rheology of polystyrene/poly(alpha-methylstyrene) and polystyrene/poly(vinyl methyl ether) blend systems. Macromolecules 31(24), 8566–8578 (1998)

    Article  CAS  Google Scholar 

  51. Maier, T.R., Jamieson, A.M., Simha, R.: Phase equilibria in SBR/polybutadiene elastomer blends: application of Flory-Huggins theory. J. Appl. Polym. Sci. 51(6), 1053–1062 (1994)

    Article  CAS  Google Scholar 

  52. Riccardi, C.C., Borrajo, J., Meynie, L., Fenouillot, F., Pascault, J.P.: Thermodynamic analysis of the phase separation during the polymerization of a thermoset system into a thermoplastic matrix. Part I. Effect of the composition on the cloud-point curves. J. Polym. Sci. B: Polym. Phys. 42(8), 1351–1360 (2004)

    Article  CAS  Google Scholar 

  53. Russell, T.P., Fetters, L.J., Clark, J.C., Bauer, B.J., Han, C.C.: Concentration fluctuations in mixtures of linear and star-shaped polymers. Macromolecules 23(2), 654–659 (1990)

    Article  CAS  Google Scholar 

  54. Govindapillai, A., Jayadas, N.H., Bhasi, M.: Analysis of the pour point of coconut oil as a lubricant base stock using differential scanning calorimetry. Lubr. Sci. 21, 13–26 (2009)

    Article  CAS  Google Scholar 

  55. Letoffe, J.M., Claudy, P., Vassilakis, D., Damin, B.: Antagonism between cloud point and cold filter plugging point depressants in a diesel fuel. Fuel 74(12), 1830–1833 (1995)

    Article  CAS  Google Scholar 

  56. Nassar, A.M., Ahmed, N.S.: The behavior of α-olefins butyl acrylate copolymers as viscosity index improvers and pour point depressants for lube oil. Int. J. Polym. Mater. 55(11), 947–955 (2006)

    Article  CAS  Google Scholar 

  57. Bantchev, G., Kenar, J., Biresaw, G., Han, M.: Free radical addition of butanethiol to vegetable oil double bonds. J. Agric. Food Chem. 57(4), 1282–1290 (2009)

    Article  CAS  Google Scholar 

  58. Anon.: Standard test method for oxidative stability of steam turbine oils by rotating pressure vessel. ASTM D 2272-98, vol. 05.01, pp. 780–791 (2002)

  59. Anon.: Standard test method for pour point of petroleum products. ASTM D 97-96a, vol. 05.01, pp. 85–92 (2002)

  60. Anon.: Standard test method for cloud point of petroleum products ASTM D 2500-99, vol. 05.01, pp. 861–866 (2002)

  61. Anon.: Standard test method for wear preventive characteristics of lubricating fluid (Four-Ball Method) ASTM D 4172-94, vol. 05.02, pp. 752–756 (2002)

  62. Anon.: Standard test method for determination of the coefficient of friction of lubricants using the four-ball wear test machine ASTM D 5183-95, vol. 05.03, pp. 165–169 (2002)

  63. Anon.: Standard test method for measurement of extreme-pressure properties of lubricating fluids (Four-Ball Method) ASTM D 2783-88, vol. 05.02, pp. 130–137 (2002)

  64. Campos, L.M., Killops, K.L., Sakai, R., Paulusse, J.M.J., Damiron, D., Drockenmuller, E., Messmore, B.W., Hawker, C.J.: Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 41(19), 7063–7070 (2008)

    Article  CAS  Google Scholar 

  65. Boyer, C., Granville, A., Davis, T.P., Bulmus, V.: Modification of RAFT-polymers via thiol-ene reactions: A general route to functional polymers and new architectures. J. Polym. Sci. A: Polym. Chem. 47(15), 3773–3794 (2009)

    Article  CAS  Google Scholar 

  66. Gadd, P.G., Gilespie, H.M., Heywood, F.W., McKenna, E.G.: Lubricating oil compositions. EU Patent 0712867 (1996)

  67. Spruell, J.M., Levy, B.A., Sutherland, A., Dichtel, W.R., Cheng, J.Y., Stoddart, J.F., Nelson, A.: Facile postpolymerization end-modification of RAFT polymers. J. Polym. Sci. A: Polym. Chem. 47(2), 346–356 (2009)

    Article  CAS  Google Scholar 

  68. Schwab, A.W., Gast, L.E., Rohwedder, W.K.: Nucleophilic addition of hydrogen sulfide to methyl oleate, methyl linoleate, and soybean oil. J. Am. Oil Chem. Soc. 52(7), 236–239 (1975)

    Article  CAS  Google Scholar 

  69. Biresaw, G., Bantchev, G.: Effect of chemical structure on film-forming properties of seed oils. J. Synth. Lubr. 25, 159–183 (2008)

    Article  CAS  Google Scholar 

  70. Schey, J.A.: Tribology in Metalworking Friction, Lubrication and Wear. American Society of Metals, Metals Park, OH (1983)

    Google Scholar 

  71. Asadauskas, S.J., Biresaw, G., McClure, T.G.: Effects of chlorinated paraffin and ZDDP concentrations on boundary lubrication properties of mineral and soybean oils. Tribol. Lett. 37(2), 111–121 (2010)

    Article  CAS  Google Scholar 

  72. Tudos, F., Fodor, Z., Iring, M.: Kinetics and mechanism of inhibited autoxidation. In: Pospisil, J., Klemchuk, P.P. (eds.) Oxidation Inhibition in Organic Materials, pp. 219–247. CRC Press, Boca Raton, FL (1990)

    Google Scholar 

  73. Lawate, S.: Environmentally-friendly hydraulic fluids. In: Erhan, S.Z., Perez, J.M. (eds.) Bio-based Industrial Fluids and Lubricants, pp. 35–45. AOCS Press, Champaign, IL (2002)

    Google Scholar 

  74. Weast, R.C. (ed.): Handbook of Chemistry and Physics, vol. 53. CRC Press, Cleveland, OH (1972)

    Google Scholar 

  75. Costello, M.T., Riff, I., Seibert, R.F.: Method for improving the oxidative stability of industrial fluids. World Intellectual Property Organization. WO 2006/094138. International Publication Date: 8 September 2006

  76. Wu, X., Zhang, X., Yang, S., Chen, H., Wang, D.: The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. J. Am. Oil Chem. Soc. 77(5), 561–563 (2000)

    Article  CAS  Google Scholar 

  77. Holderich, W.F., Rios, L.A., Weckes, P.P., Schuster, H.: Investigations into the epoxidation and alcoholysis of oleochemicals for use as lubricants. J. Synth. Lubr. 20, 289–301 (2004)

    Article  Google Scholar 

  78. Qiu, C., Han, S., Cheng, X., Ren, T.: Determining the antioxidant activities of organic sulfides by rotary bomb oxidation test and pressurized differential scanning calorimetry. Thermochim. Acta 447, 36–40 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Linda Cao for 4-ball EP measurements; Andrew Ruddy for 4-ball AW measurements; Amber Durham for synthesis of the estolide and also for conducting the RPVOT, CP and PP tests; Arkema Inc. for providing free sample of TPS-32, and Ineos Oligomers for providing free sample of PAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girma Biresaw.

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biresaw, G., Bantchev, G.B. & Cermak, S.C. Tribological Properties of Vegetable Oils Modified by Reaction with Butanethiol. Tribol Lett 43, 17–32 (2011). https://doi.org/10.1007/s11249-011-9780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9780-z

Keywords

Navigation