Is Ultra-Low Friction Needed to Prevent Wear of Diamond-Like Carbon (DLC)? An Alcohol Vapor Lubrication Study for Stainless Steel/DLC Interface


The effects of n-pentanol vapor on friction and wear of hydrogenated diamond-like carbon (DLC) films during sliding against a 440C stainless steel (SS) ball were investigated with a reciprocating pin-on-disc tribometer. Under dry sliding conditions, the friction coefficient is initially high (>0.2) for a so-called run-in period and then gradually subsequently decreases to an ultra-low value (<0.025). During the run-in period, a carbon transfer film is formed on the SS ball side, which seems to be the key for the ultra-low friction behavior. In n-pentanol vapor environments, the friction coefficient remained nearly constant at ~0.15 throughout the entire test cycles without any noticeable run-in period. Although the friction coefficient is high, there is no visible wear on rubbing surfaces when examined by optical microscopy, and the transfer film forming tendency on the SS ball side was much reduced. In humid environments, the wear prevention effect is not observed and transfer films do form on the ball side. These results imply that the n-pentanol layer adsorbed on DLC film from the vapor phase provides a molecularly thin lubrication layer which can prevent the substrate from wear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Erdemir, A., Eryilmaz, O.L., Nilufer, I.B., Fenske, G.R.: Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf. Coat Technol. 133, 448–454 (2000)

    Article  Google Scholar 

  2. 2.

    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)

    Article  Google Scholar 

  3. 3.

    Grill, A.: Review of the tribology of diamond-like carbon. Wear 168, 143–153 (1993)

    Article  CAS  Google Scholar 

  4. 4.

    Grill, A.: Tribology of diamondlike carbon and related materials: an updated review. Surf. Coat Technol. 94–95, 507–513 (1997)

    Article  Google Scholar 

  5. 5.

    Grill, A.: Diamond-like carbon: state of the art. Diamond Relat. Mater. 8, 428–434 (1999)

    Article  CAS  Google Scholar 

  6. 6.

    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D Appl. Phys. 39, R311–R327 (2006)

    Article  CAS  Google Scholar 

  7. 7.

    Eryilmaz, O.L., Erdemir, A.: Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat Technol. 201, 7401–7407 (2007)

    Article  CAS  Google Scholar 

  8. 8.

    Donnet, C., Grill, A.: Friction control of diamond-like carbon coatings. Surf. Coat Technol. 94–5, 456–462 (1997)

    Article  Google Scholar 

  9. 9.

    Ronkainen, H., Koskinen, J., Likonen, J., Varjus, S., Vihersalo, J.: Characterization of wear surfaces in dry sliding of steel and alumina on hydrogenated and hydrogen-free carbon films. Diamond Relat. Mater. 3, 1329–1336 (1994)

    Article  CAS  Google Scholar 

  10. 10.

    Voevodin, A.A., Donley, M.S., Zabinski, J.S.: Pulsed laser deposition of diamond-like carbon wear protective coatings: a review. Surf. Coat Technol. 92, 42–49 (1997)

    Article  CAS  Google Scholar 

  11. 11.

    Harris, S.J., Weiner, A.M., Meng, W.J.: Tribology of metal-containing diamond-like carbon coatings. Wear 211, 208–217 (1997)

    Article  CAS  Google Scholar 

  12. 12.

    Kim, H.I., Lince, J.R., Eryilmaz, O.L., Erdemir, A.: Environmental effects on the friction of hydrogenated DLC films. Tribol. Lett. 21, 53–58 (2006)

    Article  CAS  Google Scholar 

  13. 13.

    Eryilmaz, O.L., Erdemir, A.: Investigation of initial and steady-state sliding behavior of a nearly frictionless carbon film by imaging 2-and 3-D TOF-SIMS. Tribol. Lett. 28, 241–249 (2007)

    Article  CAS  Google Scholar 

  14. 14.

    Erdemir, A., Bindal, C., Pagan, J., Wilbur, P.: Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen. Surf. Coat Technol. 77, 559–563 (1995)

    Google Scholar 

  15. 15.

    Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Wilbur, P.: Characterization of transfer layers forming on surfaces sliding against diamond-like carbon. Surf. Coat Technol. 86–7, 692–697 (1996)

    Article  Google Scholar 

  16. 16.

    Liu, A. C. Y., Arenal, R., Miller, D. J., Chen, X. D., Johnson, J. A., Eryilmaz, O. L., Erdemir, A., Woodford, J. B.: Structural order in near-frictionless hydrogenated diamondlike carbon films probed at three length scales via transmission electron microscopy. Phys. Rev. B: Condens. Matter 75:205402 (2007)

    Google Scholar 

  17. 17.

    Strawhecker, K., Asay, D.B., McKinney, J., Kim, S.H.: Reduction of adhesion and friction of silicon oxide surface in the presence of n-propanol vapor in the gas phase. Tribol. Lett. 19, 17–21 (2005)

    Article  CAS  Google Scholar 

  18. 18.

    Asay, D.B., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763 (2005)

    Article  CAS  Google Scholar 

  19. 19.

    Barnette, A.L., Asay, D.B., Janik, M.J., Kim, S.H.: Adsorption isotherm and orientation of alcohols on hydrophilic SiO2 under ambient conditions. J. Phys. Chem. B 113, 10632–10641 (2009)

    CAS  Google Scholar 

  20. 20.

    Asay, D.B., Barnette, A.L., Kim, S.H.: Effects of surface chemistry on structure and thermodynamics of water layers at solid-vapor interfaces. J. Phys. Chem. B 113, 2128–2133 (2009)

    Article  CAS  Google Scholar 

  21. 21.

    Erdemir, A.: The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 146, 292–297 (2001)

    Article  Google Scholar 

  22. 22.

    Eryilmaz, O.L., Erdemir, A.: On the hydrogen lubrication mechanism(s) of DLC films: an imaging TOF-SIMS study. Surf. Coat Technol. 203, 750–755 (2008)

    Article  CAS  Google Scholar 

  23. 23.

    Yen, B.K.: Influence of water vapor and oxygen on the tribology of carbon materials with sp(2) valence configuration. Wear 192, 208–215 (1996)

    Article  CAS  Google Scholar 

  24. 24.

    Chandrasekar, S., Bhushan, B.: The role of environment in the friction of diamond for magnetic recording head applications. Wear 153, 79–89 (1992)

    Article  CAS  Google Scholar 

  25. 25.

    Hsiao, E., Kim, D., Kim, S.H.: Effects of ionic side groups attached to polydimethylsiloxanes on lubrication of silicon oxide surfaces. Langmuir 25, 9814–9823 (2009)

    Article  CAS  Google Scholar 

  26. 26.

    Sambasivan, S., Hsieh, S., Fischer, D.A., Hsu, S.M.: Effect of self-assembled monolayer film order on nanofriction. J. Vac. Sci. Technol. A 24, 1484–1488 (2006)

    Article  CAS  Google Scholar 

  27. 27.

    Khatri, O.P., Biswas, S.K.: Friction of octadecyltrichlorosilane monolayer self-assembled on silicon wafer in 0% relative humidity. J. Phys. Chem. B 111, 2696–2701 (2007)

    CAS  Google Scholar 

  28. 28.

    Choi, J., Kawaguchi, M., Kato, T.: Possibility of organic monolayer films as lubricants for disk drives: comparative study of PFPE and organosilane. J. Tribol. Trans. ASME 125, 850–853 (2003)

    Article  CAS  Google Scholar 

  29. 29.

    Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24, 155–159 (2008)

    Article  CAS  Google Scholar 

  30. 30.

    Asay, D.B., Dugger, M.T., Kim, S.H.: In situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2008)

    Article  CAS  Google Scholar 

  31. 31.

    Barnette, A.L., Asay, D.B., Kim, D., Guyer, B.D., Lim, H., Janik, M.J., Kim, S.H.: Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments. Langmuir 25, 13052–13061 (2009)

    Article  CAS  Google Scholar 

  32. 32.

    Barnette, A.L., Asay, D.B., Ohlhausen, J.A., Dugger, M.T., Kim, S.H.: Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: when does it occur and is it responsible for effective vapor phase lubrication? Langmuir 26, 16299–16304 (2010)

    Article  CAS  Google Scholar 

Download references


This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-08-1-0010).

Author information



Corresponding author

Correspondence to Seong H. Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marino, M.J., Hsiao, E., Bradley, L.C. et al. Is Ultra-Low Friction Needed to Prevent Wear of Diamond-Like Carbon (DLC)? An Alcohol Vapor Lubrication Study for Stainless Steel/DLC Interface. Tribol Lett 42, 285 (2011).

Download citation


  • Diamond-like carbon
  • DLC
  • Stainless steel
  • Wear
  • Friction
  • Vapor-phase lubrication