Skip to main content
Log in

Mechanism of Abrasive Wear in Nanomachining

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, nanomachining is utilized to investigate the abrasive wear mechanism that produces a nano scale groove on a bulk material. Two different tools (Berkovich and Conical) with the same tip radius (100 nm) but different edge geometries were used for machining both Cu- and Ni-coated materials with a nanoindenter that was equipped with a nano scratching attachment. It was found that the generated forces (normal and cutting) increased with the increase of depth of cut; however, the generated normal force at the minimum depth of cut (50 nm) was more than the critical force for all machining conditions. Therefore, at the minimum depth of cut, groove formation started with the ploughing mode of abrasive wear mechanism, then the cutting mechanism activated along with the ploughing mechanism above a 100 nm depth of cut. The percentage values of these two mechanisms were determined and utilized to determine the dominant mode of the abrasive wear mechanism for producing a nano scale groove on a metal surface and, to correlate this, abrasive wear mechanism with the co-efficient of friction (μ) at different machining conditions. The results also showed that the co-efficient of friction (μ) increased when ploughing was the dominant mode of abrasive wear mechanism to produce a nano scale groove. Thus, μ was found to be proportional to the ploughing mode of abrasive wear mechanism in nanomachining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fang, T.H., Weng, C.I., Chang, J.G.: Machining characterization of the nano-lithography process using atomic force microscopy. Nanotechnology. 11, 181–187 (2000)

    Article  Google Scholar 

  2. Kato, K.: Classification of wear mechanisms/models. Proc. Instn. Mech. Engrs. J. 216, 349–355 (2002)

    Article  Google Scholar 

  3. Li, X., Nardi, P., Baek, C.W., Kim, J.M., Kim, Y.K.: Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope. J. Micromech. Microeng. 15, 551–556 (2005)

    Article  CAS  Google Scholar 

  4. Kato, K.: Micro-mechanisms of wear—wear modes. Wear. 153, 277–295 (1992)

    Article  CAS  Google Scholar 

  5. Kermouchea, G., Aleksya, N., Loubet, J.L., Bergheaua, J.M.: Finite element modelling of the scratch response of a coated time-dependent solid. Wear. 267, 1945–1953 (2009)

    Article  Google Scholar 

  6. Maekawa, K., Itoh, A.: Friction and tool wear in nano-scale machining-a molecular dynamics approach. Wear. 188, 115–122 (1995)

    Article  CAS  Google Scholar 

  7. Barge, M., Kermouche, G., Gilles, P., Bergheau, J.M.: Experimental and numerical study of the ploughing part of abrasive wear. Wear. 255, 30–37 (2003)

    Article  CAS  Google Scholar 

  8. Luo, X., Cheng, K., Guo, X., Holt, R.: An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int. J. Prod. Res. 41(7), 1449–1465 (2003)

    Article  Google Scholar 

  9. Fang, T.H., Weng, C.-I.: Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology. 11, 148–153 (2000)

    Article  CAS  Google Scholar 

  10. Zhang, L., Tanaka, H.: Towards a deeper understanding of wear and friction on the atomic scale molecular dynamics analysis. Wear. 211, 44–53 (1997)

    Article  CAS  Google Scholar 

  11. Ye, Y.Y., Biswas, R., Morris, J.R., Bastawros, A., Chandra, A.: Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology. 14, 390–396 (2003)

    Article  CAS  Google Scholar 

  12. Kaneko, R.: Microtribology today and tomorrow. Wear. 168, 1–5 (1993)

    Article  CAS  Google Scholar 

  13. Kaneko, R., Umemura, S., Hirano, M., Andoh, Y., Miyamoto, T., Fukui, S.: Recent progress on microtribology. Wear. 200, 296–304 (1996)

    Article  CAS  Google Scholar 

  14. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942–1987 (1987)

    Article  CAS  Google Scholar 

  15. Erlandsson, R., Hadziioannou, G., Mate, C.M., McClelland, G.M., Chiang, S.: Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J. Chem. Phys. 89, 5190–5193 (1988)

    Article  CAS  Google Scholar 

  16. Coulomb, C.A.: The theory of simple machines. Mem. Math. Phys. Acad. 10, 161 (1785)

    Google Scholar 

  17. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature. 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  18. Fang, T.H., Chang, W.J., Tsai, S.L.: Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation. Microelectron J. 36, 55–59 (2005)

    Article  CAS  Google Scholar 

  19. Mo, Y., Zhao, W., Zhu, M., Bai, M.: Nano/micro tribological properties of ultrathin functionalized imidazolium wear-resistant ionic liquid films on single crystal silicon. Tribol. Lett. 32, 143–151 (2008)

    Article  CAS  Google Scholar 

  20. Fang, T.-H., Chang, W.J., Weng, C.I.: Nanoindentation and nanomachining characteristics of gold and platinum thin films. Mat. Sci. Eng. A. 430, 332–340 (2006)

    Article  Google Scholar 

  21. Fang, T.H., Chang, W.J.: Effects of AFM-based nanomachining process on aluminum surface. J. Phys. Chem. Solids. 64, 913–918 (2003)

    Article  CAS  Google Scholar 

  22. Kawasegi, N., Takano, N., Oka, D., Morita, N., Yamada, S., Kanda, K., Takano, S., Obata, T., Ashida, K.: Nanomachining of silicon surface using atomic force microscope with diamond tip. J. Manuf. Sci. 128, 723–729 (2006)

    Article  Google Scholar 

  23. Ashida, K., Morita, N., Yoshida, Y.: Study on nano-machining process using mechanism of a friction force microscope. JSME. Int. J. 44(1), 244–253 (2001)

    Article  Google Scholar 

  24. Park, J.W., Kawasegi, N., Morita, N., Lee, D.W.: Tribonanolithography of silicon in aqueous solution based on atomic force microscopy. Appl. Phys. Lett. 85(10), 1766–1768 (2004)

    Article  CAS  Google Scholar 

  25. Kawasegi, N., Morita, N., Yamada, S., Takano, N., Oyama, T., Ashida, K.: Etch stop of silicon surface induced by tribo-nanolithography. Nanotechnology. 16(8), 1411–1414 (2005)

    Article  CAS  Google Scholar 

  26. Enamura, T., Shimada, S., Takezawa, N., Ikawa, N.: Crack initiation in machining monocrystalline silicon. CIRP. Ann. Manuf. Technol. 48, 81–84 (1999)

    Article  Google Scholar 

  27. Shimada, S., Lkawa, N., Inamura, T., Ohmori, H., Sata, T.: Brittle-ductile transition phenomena in microindentation and micromachining. CIRP. Ann. Manuf. Technol. 44, 523–526 (1995)

    Article  Google Scholar 

  28. Lin, Z.C., Huang, J.C.: A study of the estimation method of the cutting force for a conical tool under nanoscale depth of cut by molecular dynamics. Nanotechnology. 19, 1–13 (2008)

    Google Scholar 

  29. Li, X., Bhushan, B.: Micronanomechanical and tribological studies of bulk and thin-film materials used in magnetic recording heads. Thin Solid Films. 398–399, 313–319 (2001)

    Article  Google Scholar 

  30. Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy. 97(1–4), 481–494 (2003)

    Article  CAS  Google Scholar 

  31. Arefin, S., Li, X.P., Rahman, M., Liu, K.: The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer. Int. J. Adv. Manuf. Technol. 31, 655–662 (2007)

    Article  Google Scholar 

  32. Liu, K., Li, X.P., Rahman, M., Neo, K.S., Liu, X.D.: A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int. J. Adv. Manuf. Technol. 32, 631–637 (2007)

    Article  Google Scholar 

  33. Liu, K., Li, X.P., Liang, S.Y.: The mechanism of ductile chip formation in cutting of brittle materials. Int. J. Adv. Manuf. Technol. 33, 875–884 (2007)

    Article  Google Scholar 

  34. Li, X., Cai, M., Liu, K., Rahman, M.: Characteristics of ductile mode chip formation in nanoscale cutting of brittle materials. Int. J. Abras. Technol. 1, 37–58 (2007)

    Article  Google Scholar 

  35. Rentsch, R., lnasaki, I.: Molecular dynamics simulation for abrasive processes. ClRP. Ann. Manuf. Technol. 43, 327–330 (1994)

    Article  Google Scholar 

  36. Korsunsky, A.M., McGurk, M.R., Bull, S.J., Page, T.F.: On the hardness of coated systems. Surf. Coat. Technol. 99, 171–183 (1998)

    Article  CAS  Google Scholar 

  37. Takaduam, J., Houmid Bennai, H.: Influence of substrate roughness and coating thickness on adhesion, friction and wear of TIN films. Surf. Coat. Technol. 96, 272–282 (1997)

    Article  Google Scholar 

  38. Kramer, D.E., Volinsky, A.A., Moody, N.R., Gerberich, W.W.: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150–3157 (2001)

    Article  CAS  Google Scholar 

  39. Bhusan, B.: Handbook of micro/nano tribology (The mechanics and materials science series. CRC Press LLC, Washington (1997)

    Google Scholar 

  40. Sundararajan, S., Bhusan, B.: Development of continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings. J. Mater. Res. 16(2), 437–445 (2001)

    Article  CAS  Google Scholar 

  41. Youn, S.W., Kang, C.G.: A study of nanoscratch experiments of the silicon and borosilicate in air. Mat. Sci. Eng. A. 384, 275–283 (2004)

    Google Scholar 

  42. Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mat. Sci. Eng. R. 44, 91–149 (2004)

    Article  Google Scholar 

  43. Mott, B.W.: Micro-indentation hardness testing. Butterworths, London (1956)

    Google Scholar 

  44. Tabor, D.: The hardness of metals. Clarendon Press, Oxford (1951)

    Google Scholar 

  45. Kayaba, T., Hokkirigawa, K., Kato, K.: Analysis of the abrasive wear mechanism by successive observation of wear process in a scanning electron microscope. Wear. 110, 419–430 (1986)

    Article  Google Scholar 

  46. Amontons, G.: De la resistance causes dans les mechanics. In: Memoires de l’Academie Royale A, pp. 257–282. Chez Gerard Kuyper, Amsterdam (1699)

  47. Komanduri, R., Chandrasekaran, N.: Molecular dynamics simulation of atomic-scale friction. Phys. Rev. B. 61(20), 14007–14019 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaiya Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, S., Ibrahim, R.N. Mechanism of Abrasive Wear in Nanomachining. Tribol Lett 42, 275–284 (2011). https://doi.org/10.1007/s11249-011-9770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9770-1

Keywords

Navigation