Skip to main content
Log in

Environmental Effects on the Tribology and Microstructure of MoS2–Sb2O3–C Films

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribology of molybdenum disulfide (MoS2)–Sb2O3–C films was tested under a variety of environmental conditions (ambient 50% RH, 10−7 Torr vacuum, 150 Torr oxygen, and 8 Torr water) and correlated with the composition of the surface composition expressed while sliding. High friction and low friction modes of behavior were detected. The lowest coefficient of friction, 0.06, was achieved under vacuum, while sliding in 8 Torr water and ambient conditions both yielded the highest value of 0.15. Water vapor was determined to be the environmental species responsible for high friction performance. XPS evaluations revealed a preferential expression of MoS2 at the surface of wear tracks produced under vacuum and an increase in Sb2O3 concentration in wear tracks produced in ambient air (50% RH). In addition, wear tracks produced by sliding in vacuum exhibited the lowest surface roughness as compared to those produced in other environments, consistent with the picture of low friction originating from well-ordered MoS2 layers produced through sliding in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muratore, C., Voevodin, A.A.: Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments. Annu. Rev. Mater. Sci. 39, 297–324 (2009)

    Article  CAS  Google Scholar 

  2. Hilton, M.R., Fleischauer, P.D.: Applications of solid lubricant films in spacecraft. Surf. Coat. Technol. 54(55), 435–441 (1992)

    Article  Google Scholar 

  3. Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923)

    Article  CAS  Google Scholar 

  4. Winer, W.O.: Molybdenum disulfide as a lubricant: a fundamental review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  CAS  Google Scholar 

  5. Peterson, M.B., Johnson, R.L.: Friction and wear investigations of molybdenum disulfide I: effect of moisture. NACA Technical Note 3055(1953)

  6. Bolster, R.N., Singer, I.L., Wegand, J.C., Fayuelle, S., Gossett, C.R.: Preparation by ion-beam-assisted deposition, analysis and tribological behavior of MoS2 films. Surf. Coat. Technol. 46, 207–216 (1991)

    Article  CAS  Google Scholar 

  7. Ohmae, N.: Humidity effects on tribology of advanced carbon materials. Tribol. Int. 39, 1497–1502 (2006)

    Article  CAS  Google Scholar 

  8. Martin, J.M., Pascal, H., Donnet, C., Le Mogne, T., Loubet, J.L., Epicier, T.: Superlubricity of MoS2: crystal orientation mechanisms. Surf. Coat. Technol. 68–69, 427–432 (1994)

    Article  Google Scholar 

  9. Stupp, B.C.: Synergistic effects of metals co-sputtered with MoS2. Thin Solid Films 84, 257–266 (1981)

    Article  CAS  Google Scholar 

  10. Spalvins, T.: Frictional and morphological properties of Au–MoS2 films sputtered from a compact target. Thin Solid Films 118, 375–384 (1984)

    Article  CAS  Google Scholar 

  11. Teer, D.G., Hampshire, J., Fox, V., Bellido-Gonzalez, V.: The tribological properties of MoS2/metal composite coatings deposited by closed field magnetron sputtering. Surf. Coat. Technol. 94, 572–577 (1997)

    Article  Google Scholar 

  12. Wahl, K.J., Seitzman, L.E., Bolster, R.N., Singer, I.L.: Low-friction, high-endurance, ion-beam-deposited Pb–Mo–S coatings. Surf. Coat. Technol. 73, 152–159 (1995)

    Article  CAS  Google Scholar 

  13. Devine, M.J., Lamson, E.R., Bowen, J.H.: Inorganic solid film lubricants. J. Chem. Eng. Data. 6, 79–82 (1961)

    Article  CAS  Google Scholar 

  14. Hopkins, V., Gaddis, D.: Friction of solid film lubricants being developed for use in space environments. Lubr. Eng. 21, 52–58 (1965)

    CAS  Google Scholar 

  15. Gardos, M.N.: The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol. Trans. 31, 214–227 (1988)

    Article  CAS  Google Scholar 

  16. Simmonds, M.C., Savan, A., Pflüger, E., Van Swygenhoven, H.: Mechanical and tribological performance of MoS2 co-sputtered composites. Surf. Coat. Technol. 126, 15–24 (2000)

    Article  CAS  Google Scholar 

  17. Centers, P.W.: The role of oxide and sulfide additions in solid lubricant compacts. Tribol. Trans. 31, 149–156 (1987)

    Article  Google Scholar 

  18. Zabinski, J.S., Donley, M.S., McDevitt, N.T.: Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear 165, 103–108 (1993)

    Article  CAS  Google Scholar 

  19. Bell, M.E., Findlay, J.H.: Molybdenite as a new lubricant. Phys. Rev. 59, 922 (1941)

    CAS  Google Scholar 

  20. Boyd, J., Robertson, B.P.: The friction properties of various lubricants at high pressures. ASME Trans. 67, 51–59 (1945)

    Google Scholar 

  21. Deacon, R.F., Goodman, J.F.: Lubrication by lamellar solids. Proc. R Soc. London Ser. A. 243, 464–482 (1958)

    Article  Google Scholar 

  22. Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964)

    Article  Google Scholar 

  23. Brainard, W.A.: The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum (10−9 to 10−6 Torr). NASA, Washington, DC (1969)

    Google Scholar 

  24. Stupian, G.W.: Adhesion of MoS2 powder burnished on metal substrates. J. Vac. Sci. Technol. 13, 684–692 (1976)

    Article  CAS  Google Scholar 

  25. Lince, J.R., Frantz, P.P.: Anisotropic oxidation of MoS2 crystallites studied by angle-resolved X-ray photoelectron spectroscopy. Tribol. Lett. 9, 211–218 (2000)

    Article  CAS  Google Scholar 

  26. Savan, A., Simmonds, M.C., Huang, Y., Constable, C.P., Creasey, S., Gerbig, Y., Haefke, H., Lewis, D.B.: Effects of temperature on the chemistry and tribology of co-sputtered MoS2x –Ti composite thin films. Thin Solid Films 489, 137–144 (2005)

    Article  CAS  Google Scholar 

  27. Le Mogne, T., Donnet, C., Martin, J.M., Tonck, A., Millard-Pinard, N., Fayuelle, S., Moncoffre, N.: Nature of super-lubricating MoS2 physical vapor deposition coatings. J. Vac. Sci. Technol. A 12, 1998–2004 (1993)

    Article  Google Scholar 

  28. Zhang, X., Celis, J.P.: Nanotribology of MoS x coatings investigated by oscillating lateral force micoscopy. Appl. Surf. Sci. 206, 110–118 (2003)

    Article  CAS  Google Scholar 

  29. Zabinski, J.S., Donley, M.S., Dyhouse, V.J., McDevitt, N.T.: Chemical and tribological characterization of PbO–MoS2 films grown by pulsed laser deposition. Thin Solid Films 214, 156–163 (1992)

    Article  CAS  Google Scholar 

  30. Lince, J.R.: Tribology of co-sputtered nanocomposite Au/MoS2 solid lubricant films over a wide contact stress range. Tribol. Lett. 17, 419–428 (2004)

    Article  CAS  Google Scholar 

  31. Lince, J.R.: MoS2-xOx solid solutions in thin films produced by rf-sputter-deposition. J. Mater. Res. 5, 218–222 (1989)

    Article  Google Scholar 

  32. Panitz, J.K.G., Pope, L.E., Lyons, J.E., Staley, D.J.: The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J. Vac. Sci. Technol. A 6, 1166–1170 (1988)

    Article  CAS  Google Scholar 

  33. Zhang, X., Vitchev, R.G., Lauwerens, W., Jiawen, H., Celis, J.P.: Transfer of molybdenum sulphide coating material onto corundum balls. Thin Solid Films 446, 78–94 (2004)

    Article  CAS  Google Scholar 

  34. Savan, A., Haefke, H.: MoS2-based alloys and nanocomposites for solid lubrication. Lubr. Sci. 16, 229–238 (2004)

    Article  CAS  Google Scholar 

  35. Singer, I.L., Fayuelle, S., Ehni, P.D.: Wear behavior of triode-sputtered MoS2 coatings in dry sliding contact with steel and ceramics. Wear 195, 7–20 (1996)

    Article  CAS  Google Scholar 

  36. Lieber, C.M., Kim, Y.: Characterization of the structural, electronic and tribological properties of metal dichalcogenides by scanning probe microscopies. Thin Solid Films 206, 355–359 (1991)

    Article  CAS  Google Scholar 

  37. Simmonds, M.C., Pflüger, A., Van Swygenhoven, E.: Microstructure and tribological performance of MoS x /Au co-sputtered composites. J. Vac. Sci. Technol. A 19, 609–613 (2001)

    Article  CAS  Google Scholar 

  38. Zhang, X., Lauwerens, W., Jiawen, H., Celis, J.P.: Reorientation of randomly oriented MoS x coatings during fretting wear tests. Tribol. Lett. 17, 607–612 (2004)

    Article  CAS  Google Scholar 

  39. Hu, J.J., Bultman, J.E., Zabinski, J.S.: Microstructure and lubrication mechanism of multilayered MoS2/Sb2O3 thin films. Tribol. Lett. 21, 169–174 (2006)

    Article  Google Scholar 

  40. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., McDevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38, 894–904 (1995)

    Article  CAS  Google Scholar 

  41. Su, Y.L., Kao, W.H.: Tribological behaviour and wear mechanism of MoS x –Cr coatings sliding against various counter body. Tribol. Int. 36, 11–23 (2003)

    Article  CAS  Google Scholar 

  42. Renevier, N.M., Fox, V.C., Teer, D.G., Hampshire, J.: Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Technol. 127, 24–37 (2000)

    Article  CAS  Google Scholar 

  43. Lince, J.R., Hilton, M.R., Bommannavar, A.S.: Metal incorporation in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure. J. Mater. Res. 10, 2091–2105 (1995)

    Article  CAS  Google Scholar 

  44. Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180–181, 76–84 (2004)

    Article  Google Scholar 

  45. Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 12–23 (1992)

    Article  Google Scholar 

  46. Zhang, X., Lauwerens, W., Jiawen, H., Celis, J.P.: Structure and growth of basal and random oriented MoS x coatings deposited by magnetron sputtering. J. Vac. Sci. Technol. 21, 416–421 (2003)

    Article  CAS  Google Scholar 

  47. Chen, L.M., Tu, J.P., Zhang, S.C., Peng, S.M., Gu, B.: Effect of deposition pressure on microstructure and tribological behavior of MoS x /MoS x -Mo nanoscale multi-layer films. Tribol. Lett. 25, 87–91 (2007)

    Article  CAS  Google Scholar 

  48. Voevodin, A.A., O’Neil, J.P., Zabinski, J.S.: WC/DLC/WS2 nanocomposite coatings for aerospace tribology. Tribol. Lett. 6, 75–78 (1999)

    Article  CAS  Google Scholar 

  49. Voevodin, A.A., Zabinski, J.S.: Super tough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223–231 (2000)

    Article  CAS  Google Scholar 

  50. Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)

    CAS  Google Scholar 

  51. Efeoglu, I.: Co-sputtered Mo:S:C:Ti:B based coating for tribological applications. Surf. Coat. Technol. 200, 1724–1730 (2005)

    Article  CAS  Google Scholar 

  52. Fominski, V.Y., Nevolin, R.I., Titov, V.I., Scharff, W.: Tribological properties of pulsed laser deposited WSe x (Ni)/DLC coatings. Tribol. Lett. 17, 289–294 (2004)

    Article  CAS  Google Scholar 

  53. Aouadi, S.M., Paudel, Y., Simonson, W.J., Ge, Q., Kohli, P., Muratore, C., Voevodin, A.A.: Tribological investigation of adaptive MoN2/MoS2/Ag coatings with high sulfur content. Surf. Coat. Technol. 203, 1304–1309 (2009)

    Article  CAS  Google Scholar 

  54. Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19, 1–10 (1948)

    Article  CAS  Google Scholar 

  55. Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films. Tribol. Lett. 23, 155–163 (2006)

    Article  CAS  Google Scholar 

  56. Hamilton, M.A., Alvarez, L.A., Mauntler, N.A., Argibay, N., Colbert, R., Burris, D.L., Muratore, C., Voevodin, A.A., Perry, S.S., Sawyer, W.G.: A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings. Tribol. Lett. 32, 91–98 (2008)

    Article  CAS  Google Scholar 

  57. Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010)

    Article  CAS  Google Scholar 

  58. Krick, B.A., Sawyer, W.G.: Space tribometers: design for exposed experiments on orbit. Tribol. Lett. 41, 303–311 (2010)

    Article  Google Scholar 

  59. Moulder, F., Stickle, W.F., Sobol, P.E., Bomben, K.D: Handbook of X-ray photoelectron spectroscopy, ULVAC-PHI, Inc., Chigasaki, Japan (1995)

  60. Carpick, R.W.: The study of contact, adhesion and friction at the atomic scale by atomic force microscopy. Ph.D. Thesis, University of California Berkeley, California (1997)

  61. Weber, T., Muijsers, J.C., van Wolput, J.H.M.C., Verhagen, C.P.J., Niemantsverdriet, J.W.: Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 100, 14144–14150 (1996)

    Article  CAS  Google Scholar 

  62. Song, Z., Cai, T., Chang, Z., Liu, G., Rodriguez, J.A., Hrbek, J.: Molecular level study of the formation and the spread of MoO on Au(111) by scanning tunneling microscopy and X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 125, 8059–8066 (2003)

    Article  CAS  Google Scholar 

  63. Diaz, J., Paolicelli, G., Ferrer, S., Comin, F.: Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064–8069 (1996)

    Article  CAS  Google Scholar 

  64. Balasubramanian, T., Anderson, J.N., Walldén, L.: Surface-bulk core-level splitting in graphite. Phys. Rev. B 64, 25420 (2001)

    Google Scholar 

  65. Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A., Find, J., Wild, U., Schlögl, R.: Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40, 597–608 (2002)

    Article  Google Scholar 

  66. Lizzit, S., Petaccia, L., Goldini, A.: C 1s photoemission spectrum in graphite(0001). Phys. Rev. B 76: 153408-1-4

  67. Honma, T., Sato, R., Benino, Y., Komatsu, T., Dimitov, V.: Electronic polarizability, optical basicity and XPS spectra of Sb2O3–B2O3 glasses. J. Non-Cryst. Solids 272, 1–13 (2000)

    Article  CAS  Google Scholar 

  68. Zeng, D.W., Zhu, B.L., Xie, C.S., Song, W.L., Wang, A.H.: Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Mater. Sci. Eng. A 366, 332–337 (2004)

    Article  Google Scholar 

  69. Chen, X., Wang, X., An, C., Liu, J., Quan, Y.: Synthesis of Sb2O3 nanorods under hydrothermal conditions. Mater. Res. Bull. 40, 469–474 (2005)

    Article  CAS  Google Scholar 

  70. Torres, J., Alfonso, J.E., López-Carreño, L.D.: XPS and X-ray diffraction characterization of MoO3 thin films prepared by laser evaporation. Phys. Status Solidi. C 2, 3726–3729 (2005)

    Article  CAS  Google Scholar 

  71. Lopez, G.P., Castner, D.G., Ratner, B.D.: XPS O 1s binding energies for polymers containing hydroxl, ether, ketone, and ester groups. Surf. Interface. Anal. 17, 267–272 (1991)

    Article  CAS  Google Scholar 

  72. Petit, C., Seredych, M., Bandosz, T.J.: Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009)

    Article  CAS  Google Scholar 

  73. Dvorak, S.D., Wahl, K.J., Singer, I.L.: In situ analysis of third body contributions to sliding friction of a Pb–Mo–S coating in dry and humid air. Tribol. Lett. 28, 263–274 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an AFOSR grant FA9550-08-1-0027. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott S. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudder, G.J., Zhao, X., Krick, B. et al. Environmental Effects on the Tribology and Microstructure of MoS2–Sb2O3–C Films. Tribol Lett 42, 203–213 (2011). https://doi.org/10.1007/s11249-011-9764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9764-z

Keywords

Navigation