Tribology Letters

, Volume 42, Issue 1, pp 117–127 | Cite as

High-Speed Friction Measurements Using a Modified Surface Forces Apparatus

  • D. D. Lowrey
  • K. Tasaka
  • J. H. Kindt
  • X. Banquy
  • N. Belman
  • Y. Min
  • N. S. Pesika
  • G. Mordukhovich
  • J. N. Israelachvili
Original Paper

Abstract

Methods of measuring friction forces in the surface forces apparatus (SFA) are presented for sliding velocities from <1 nm/s to >10 m/s. A feed-forward control (FFC) system for the piezoelectric bimorph slider attachment is introduced to allow experiments at velocities up to ~4 mm/s. For still higher speeds, a motor-driven rotating mini-disk setup using a pin-on-disk geometry is presented, with modifications to enable sliding velocities in the ranges 1 cm/s–5 m/s and 1–25 m/s. Example data sets demonstrate the applicability of the approach to modeling important tribological systems including hard-disk drives. We find that mechanical system parameters such as the resonant frequencies and mutual alignments of different moving parts become increasingly important in determining the tribological response at sliding velocities above ~1 cm/s (for SFA or bench top devices). Smooth or stick-slip sliding—common features of low-speed sliding—become replaced by large-amplitude oscillatory responses that depend on the load and especially the driving speed or rotational/reciprocating frequencies. Detailed recordings and modeling of these complex effects are necessary for fully understanding and controlling frictional behavior at high speeds.

Keywords

Friction test methods Boundary lubrication test methods 

References

  1. 1.
    Luengo, G., Israelachvili, J., Granick, S.: Generalized effects in confined fluids: new friction map for boundary lubrication (vol 200, pg 328, 1996). Wear 205, 246 (1997)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.L., Helm, C.A., Israelachvili, J.N.: Molecular mechanisms associated with adhesion and contact-angle hysteresis of monolayer surfaces. J. Phys. Chem. 95, 10736–10747 (1991)CrossRefGoogle Scholar
  3. 3.
    Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)CrossRefGoogle Scholar
  4. 4.
    Israelachvili, J., Min, Y., Akbulut, M., Alig, A., Carver, G., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K., Zeng, H.: Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010)CrossRefGoogle Scholar
  5. 5.
    Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control. Wiley, Hoboken (2004)Google Scholar
  6. 6.
    Newby, B.M.Z., Chaudhury, M.K., Brown, H.R.: Macroscopic evidence of the effect of interfacial slippage on adhesion. Science 269, 1407–1409 (1995)CrossRefGoogle Scholar
  7. 7.
    McGuiggan, P.M., Hsu, S.M., Fong, W., Bogy, D., Bhatia, C.S.: Friction measurements of ultra-thin carbon overcoats in air. J. Tribol. 124, 239–244 (2002)CrossRefGoogle Scholar
  8. 8.
    Berman, A.D., Ducker, W.A., Israelachvili, J.N.: Origin and characterization of different stick-slip friction mechanisms. Langmuir 12, 4559–4563 (1996)CrossRefGoogle Scholar
  9. 9.
    Landman, U., Luedtke, W.D., Ribarsky, M.W.: Structural and dynamical consequences of interactions in interfacial systems. J. Vac. Sci. Technol. A 7, 2829–2839 (1989)CrossRefGoogle Scholar
  10. 10.
    Landman, U., Luedtke, W.D., Ringer, E.M.: Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear 153, 3–30 (1992)CrossRefGoogle Scholar
  11. 11.
    Robbins, M.O., Thompson, P.A.: Critical velocity of stick-slip motion. Science 253, 916 (1991)CrossRefGoogle Scholar
  12. 12.
    Thompson, P.A., Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990)CrossRefGoogle Scholar
  13. 13.
    Bhushan, B.: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York (1990)Google Scholar
  14. 14.
    Chen, Y.L., Israelachvili, J.N.: Effects of ambient conditions on adsorbed surfactant and polymer monolayers. J. Phys. Chem. 96, 7752–7760 (1992)CrossRefGoogle Scholar
  15. 15.
    Yamada, S., Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102, 234–244 (1998)CrossRefGoogle Scholar
  16. 16.
    Drummond, C., Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910–4920 (2000)CrossRefGoogle Scholar
  17. 17.
    Johnston, G.J., Wayte, R., Spikes, H.A.: The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34, 187–194 (1991)CrossRefGoogle Scholar
  18. 18.
    Muller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003)CrossRefGoogle Scholar
  19. 19.
    Vigil, G., Xu, Z.H., Steinberg, S., Israelachvili, J.: Interactions of silica surfaces. J. Colloid Interface Sci. 165, 367–385 (1994)CrossRefGoogle Scholar
  20. 20.
    Steinberg, S., Ducker, W., Vigil, G., Hyukjin, C., Frank, C., Tseng, M.Z., Clarke, D.R., Israelachvili, J.N.: Vanderwaals epitaxial-growth of alpha-alumina nanocrystals on mica. Science 260, 656–659 (1993)CrossRefGoogle Scholar
  21. 21.
    Golan, Y., Alcantar, N.A., Kuhl, T.L., Israelachvili, J.: Generic substrate for the surface forces apparatus: deposition and characterization of silicon nitride surfaces. Langmuir 16, 6955–6960 (2000)CrossRefGoogle Scholar
  22. 22.
    Zeng, H.B., Zhao, B.X., Israelachvili, J.N., Tirrell, M.: Liquid- to solid-like failure mechanism of thin polymer films at micro- and nanoscales. Macromolecules 43, 538–542 (2010)CrossRefGoogle Scholar
  23. 23.
    Horn, R.G., Bachmann, D.J., Connor, J.N., Miklavcic, S.J.: The effect of surface and hydrodynamic forces on the shape of a fluid drop approaching a solid surface. J. Phys. 8, 9483–9490 (1996)Google Scholar
  24. 24.
    Reddyhoff, T., Spikes, H.A., Olver, A.V.: Compression heating and cooling in elastohydrodynamic contacts. Tribol. Lett. 36, 69–80 (2009)CrossRefGoogle Scholar
  25. 25.
    Akbulut, M., Alig, A.R.G., Israelachvili, J.: Friction and tribochemical reactions occurring at shearing interfaces of nanothin silver films on various substrates. J. Chem. Phys. 124, 174703 (2006)CrossRefGoogle Scholar
  26. 26.
    Xie, H.W., Song, K.Y., Mann, D.J., Hase, W.L.: Temperature gradients and frictional energy dissipation in the sliding of hydroxylated alpha-alumina surfaces. Phys Chem Chem Phys 4, 5377–5385 (2002)CrossRefGoogle Scholar
  27. 27.
    Bhushan, B.: Springer Handbook of Nanotechnology. Springer, Berlin (2007)CrossRefGoogle Scholar
  28. 28.
    Heuberger, M., Drummond, C., Israelachvili, J.: Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038–5041 (1998)CrossRefGoogle Scholar
  29. 29.
    Luengo, G., Schmitt, F.J., Hill, R., Israelachvili, J.: Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30, 2482–2494 (1997)CrossRefGoogle Scholar
  30. 30.
    Lowrey, D. D., Min, Y., Banquy, X., Belman, N., Israelachvili, J. N.: Monitoring transient friction behavior in lubricated sliding contacts. Presented at International Joint Tribology Conference, Memphis (2009)Google Scholar
  31. 31.
    Drummond, C., Israelachvili, J.: Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63(4 Pt 1), 041506 (2001)CrossRefGoogle Scholar
  32. 32.
    Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68, 021602 (2003)CrossRefGoogle Scholar
  33. 33.
    Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993)CrossRefGoogle Scholar
  34. 34.
    Ruths, M., Israelachvili, J.: Surface forces and nanorheology of molecularly thin films. In: Bhushan, B. (ed.) Springer Handbook of Nanotechnology, 2nd rev and extended edn, pp. 859–924. Springer, Berlin (2007)CrossRefGoogle Scholar
  35. 35.
    Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. D. Lowrey
    • 1
  • K. Tasaka
    • 2
    • 3
  • J. H. Kindt
    • 4
    • 5
  • X. Banquy
    • 2
  • N. Belman
    • 2
  • Y. Min
    • 2
    • 6
  • N. S. Pesika
    • 2
    • 7
  • G. Mordukhovich
    • 8
  • J. N. Israelachvili
    • 9
  1. 1.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Hitachi Global Storage Technologies Japan, Ltd.FujisawaJapan
  4. 4.Nano Surfaces BusinessBrukerMannheimGermany
  5. 5.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  6. 6.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  7. 7.Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansUSA
  8. 8.General Motors Research & DevelopmentWarrenUSA
  9. 9.Department of Chemical Engineering and Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations