Skip to main content
Log in

Influence of Plasma Treatment on Carbon Fabric for Enhancing Abrasive Wear Properties of Polyetherimide Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Interfacial adhesion between matrix and fiber plays a crucial role in controlling performance properties of composites. Carbon fibers have major constraint of chemical inertness and hence limited adhesion with the matrix. Surface treatment of fibers is the best solution of the problem. In this work, cold remote nitrogen oxygen plasma (CRNOP) was used for surface treatment. Twill weave carbon fabric (CF) (55–58 vol%) was used with and without plasma treatment with varying content of oxygen (0–1%) in nitrogen plasma to develop composites with Polyetherimide (PEI) matrix. The composites were developed by compression molding and assessed for mechanical and tribological (abrasive wear mode) properties. Improvement in tensile strength, flexural strength, and interlaminar shear strength (ILSS) was observed in composites due to treatment. Similarly, improvement in wear resistance (W R) and reduction in friction coefficient (μ) were observed in treated fabric composites when slid against silicon carbide (SiC) abrasive paper under varying loads. A correlation between wear resistance and tensile strength was slightly better than that in Lancaster–Ratner plot indicating that ultimate tensile strength (S) and elongation to break (e) were contributing to control the W R of the composites. It was concluded that enhanced adhesion of fibers with matrix was responsible for improvement in performance properties of composites, as evident from SEM, Fourier Transform Infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soutis, C.: Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. 412, 171–176 (2005)

    Article  Google Scholar 

  2. Yue, Z.R., Jiang, W., Wang, L., Gardner, S.D., Pittman Jr., C.U.: Surface characterization of electrochemically oxidized carbon fibers. Carbon 37, 1785–1796 (1999)

    Article  CAS  Google Scholar 

  3. Pittman Jr., C.U., Jiang, W., Yue, Z.R., Gardner, S.D., Wang, L., Toghiani, H., Leon, C.A., Leon, Y.: Surface properties of electrochemically oxidized carbon fibers. Carbon 37, 1797–1807 (1999)

    Article  CAS  Google Scholar 

  4. Fukunata, A., Ueda, S.: Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Compos. Sci. Technol. 60, 249–254 (2000)

    Article  Google Scholar 

  5. Cao, H., Huang, Y., Zhang, Z., Sun, J.: Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Compos. Sci. Technol. 65, 1655–1662 (2005)

    Article  CAS  Google Scholar 

  6. Severini, F., Formaro, L., Pegoraro, M., Posca, L.: Chemical modification of carbon fiber surfaces. Carbon 40, 735–741 (2002)

    Article  CAS  Google Scholar 

  7. Xu, Z., Huang, Y., Zhang, C., Chen, L.: Influence of rare earth treatment on interfacial properties of carbon fiber/epoxy composites. Mater. Sci. Eng. A 444, 170–177 (2007)

    Article  Google Scholar 

  8. Xu, Z., Chen, L., Huang, Y., Li, J., Wu, X., Li, X., Jiao, Y.: Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur. Polym. J. 44, 494–503 (2008)

    Article  CAS  Google Scholar 

  9. Guo, H., Huang, Y.D., Meng, L.M., Liu, L., Fan, D.P., Liu, D.X.: Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water. Mater. Lett. 63, 1531–1534 (2009)

    Article  CAS  Google Scholar 

  10. Wang, S., Chen, Z.H., Ma, W.J., Ma, Q.S.: Influence of heat treatment on physical-chemical properties of PAN based carbon fibers. Ceram. Int. 32, 291–295 (2006)

    Article  CAS  Google Scholar 

  11. Lee, W.H., Lee, J.G., Reucroft, P.J.: XPS study of carbon fiber surface treated by thermal oxidation in a gas mixtureof O2/(O2 + N2). Appl. Surf. Sci. 171, 136–142 (2001)

    Article  CAS  Google Scholar 

  12. Li, R., Ye, L., Mai, W.: Application of plasma technologies in fiber-reinforced polymer composites: a review of recent developments. Composites A 28, 73–86 (1997)

    Article  Google Scholar 

  13. Jang, J., Yang, H.: The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 35, 2297–2303 (2000)

    Article  CAS  Google Scholar 

  14. Montes-Moran, M.A., Martinez-Alonso, A., Tascon, J.M.: Effect of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibers. Composites A 32, 361–371 (2001)

    Article  Google Scholar 

  15. Boudou, J.P., Paredes, J.I., Cuesta, A., Martinez, A.: Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon 41, 41–56 (2003)

    Article  CAS  Google Scholar 

  16. Guo, F., Zhang, Z., Liu, W., Su, F., Zhang, H.: Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites. Tribol. Int. 42, 243–249 (2009)

    Article  CAS  Google Scholar 

  17. Sua, F., Zhang, Z., Wang, K., Jiang, W., Liu, W.: Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods. Composites A 36, 1601–1607 (2005)

    Article  Google Scholar 

  18. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Elsevier, Amsterdam (1993)

    Google Scholar 

  19. Friedrich, K.: Friction and wear of polymer composites. In: Friedrich, K. (ed.) Composite Materials Series 1, vol. 8. Elsevier, Amsterdam (1986)

    Google Scholar 

  20. Lancaster J.K.: In: Jenkins, A.D. (ed.) Polymer Science: A Material Science Handbook. Elsevier, North Holland, Amsterdam (1972)

  21. Tewari, U.S., Bijwe, J., Mathur, J.N., Sharma, I.: Studies on abrasive wear of carbon fiber (short) reinforced polyamide composites. Tribol. Int. 25(1), 53–60 (1992)

    Article  CAS  Google Scholar 

  22. Cirino, M., Pipes, R.B., Friedrich, K.: The abrasive wear behaviour of continuous fibre polymer composites. J. Mater. Sci. 22, 2481–2492 (1987)

    Article  CAS  Google Scholar 

  23. Bijwe, J., Awtade, S., Ghosh, A.K.: Influence of orientation and volume fraction of Aramid Fabric on abrasive wear performance of polyethersulfone composites. Wear 260(4–5), 401–411 (2006)

    Article  CAS  Google Scholar 

  24. Bijwe, J., Awtade, S., Satapathy, B.K., Ghosh, A.K.: Influence of concentration of Aramid fabric on abrasive wear performance of polyethersulfone composites. Tribol. Lett. 17(2), 187–194 (2004)

    Article  CAS  Google Scholar 

  25. Mutel, B., Bigan, M., Vezin, H.: Remote nitrogen plasma treatment of a polyethylene powder optimisation of the process by composite experimental designs. Appl. Surf. Sci. 239, 25–35 (2004)

    Article  CAS  Google Scholar 

  26. Mutel, B., Dessaux, O., Goudmand, P., Luchier, F.: Treatment of polymer surfaces: development of an industrial plasma process. Rev. Phys. Appl. 25, 1019–1023 (1990)

    CAS  Google Scholar 

  27. Mutel, B., Grimblot, J., Dessaux, O., Goudmand, P.: XPS investigations of nitrogen-plasma-treated polypropylene in a reactor coupled to the spectrometer. Surf. Interface Anal. 30, 401–406 (2000)

    Article  CAS  Google Scholar 

  28. Mutel, B., Grimblot, J., Moineau, V., Colson, T., Dessaux, O., Goudmand, P.: Comparative study by XPS of nitrogen and oxygen implantation in different carbonaceous polymers using flowing nitrogen plasma. Surf. Interface Anal. 30, 415–419 (2000)

    Article  Google Scholar 

  29. Rattan, R., Bijwe, J.: Influence of weave of carbon fabric on abrasive wear performance of polyetherimide composites. Tribol. Lett. 22(1), 105–112 (2006)

    Article  CAS  Google Scholar 

  30. Bijwe, J., Rattan, R., Fahim, M.: Abrasive wear performance of carbon fabric reinforced polyetherimide composites: influence of content and orientation of fabric. Tribol. Int. 40, 844–854 (2007)

    Article  CAS  Google Scholar 

  31. Bijwe, J., Indumathi, J., Ghosh, A.K.: On the abrasive wear behaviour of fabric-reinforced polyetherimide composites. Wear 253, 768–777 (2002)

    Article  CAS  Google Scholar 

  32. Lhymn, C., Templemeyer, K.E., Davis, P.K.: The abrasive wear of short fiber composites. Composites 16(2), 127–136 (1985)

    Article  CAS  Google Scholar 

  33. Bijwe, J., Tewari, U.S., Vasudevan, P.: Friction and wear studies of bulk polyetherimide. J. Mater. Sci. 25, 548–556 (1990)

    Article  CAS  Google Scholar 

  34. Hutchings, I.M.: Tribology: Friction and Wear of Engineering Materials. CRC press, UK (1992)

    Google Scholar 

  35. Dibenedetto, A.T., Trachte, K.L.: The brittle fracture of amorphous thermoplastic polymers. J. Appl. Polym. Sci. 14, 2249–2262 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Prof. Brigitte Mutel from “BioMEMS” - Equipe “Procédés Plasma et Matériaux”, IEMN - UMR 8520, Université de Lille 1 Sciences et Technologie, France for extending plasma treatment facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Bijwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Bijwe, J. & Panier, S. Influence of Plasma Treatment on Carbon Fabric for Enhancing Abrasive Wear Properties of Polyetherimide Composites. Tribol Lett 41, 153–162 (2011). https://doi.org/10.1007/s11249-010-9694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9694-1

Keywords

Navigation