Improved Substrate Protection and Self-Healing of Boundary Lubrication Film Consisting of Polydimethylsiloxane with Cationic Side Groups


The substrate protection and self-healing capability of a cationic polymer lubricant (CPL) on a silicon oxide surface were tested with a pin-on-disc tribometer and atomic force microscopy (AFM). CPL was made of low molecular weight polydimethylsiloxane (PDMS) containing covalently attached quaternary ammonium cations and iodide counter-anions. CPL was spin-coated on the silicon oxide surface to form a 3–4 nm thick bound-and-mobile lubricant layer. The CPL film capable of binding to the SiO2 surface through ionic interactions is superior in substrate protection than the neutral PDMS film which cannot form the bound layer. The mobile component in the CPL film readily flows into the lubricant-depleted sliding contact region from the surrounding film. The self-healing capability of CPL via lateral flow is slightly enhanced in humid environments due to water uptake in the film. The 3–4 nm thick CPL film on silicon oxide takes 30–40 s to flow into a ~50 μm wide track, which corresponds to an apparent spreading rate of 2–3 × 10−11 m2/s.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)

    Article  Google Scholar 

  2. 2.

    Komvopoulos, K.: Surface engineering and microtribology for microelectromechanical systems. Wear 200, 305–327 (1996)

    CAS  Article  Google Scholar 

  3. 3.

    Asay, D.B., Dugger, M.T., Kim, S.H.: In situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24, 155–159 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    Strawhecker, K., Asay, D.B., McKinney, J., Kim, S.H.: Reduction of adhesion and friction of silicon oxide surface in the presence of n-propanol vapor in the gas phase. Tribol. Lett. 19, 17–21 (2005)

    CAS  Article  Google Scholar 

  6. 6.

    Barnette, A.L., Asay, D.B., Kim, D., Guyer, B.D., Lim, H., Janik, M.J., Kim, S.H.: Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments. Langmuir 25, 13052–13061 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    Ashurst, W.R., Yau, C., Carraro, C., Maboudian, R., Dugger, M.T.: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlosilane self-assembled monolayer. J. Microelectromech. Syst. 10, 41–49 (2001)

    CAS  Article  Google Scholar 

  8. 8.

    Jun, Y., Zhu, X.Y.: Alkoxyl monolayers as anti-stiction coatings in Si-based MEMS devices. J. Adhes. Sci. Technol. 17, 593–601 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    Linford, M.R., Fenter, P., Eisenberger, P.M., Chidsey, C.E.D.: Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145–3155 (1995)

    CAS  Article  Google Scholar 

  10. 10.

    Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators 82, 219–223 (2000)

    Article  Google Scholar 

  11. 11.

    Tsukruk, V.V., Bliznyuk, V.N.: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir 14, 446–455 (1998)

    CAS  Article  Google Scholar 

  12. 12.

    Gu, Q.L., Cheng, X.H.: Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon. Curr. Appl. Phys. 8, 583–588 (2008)

    Article  Google Scholar 

  13. 13.

    Wang, R.W., Baran, G., Wunder, S.L.: Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir 16, 6298–6305 (2000)

    CAS  Article  Google Scholar 

  14. 14.

    Singh, R.A., Kim, J., Yang, S.W., Oh, J.E., Yoon, E.S.: Tribological properties of trichlorosilane-based one- and two-component self-assembled monolayers. Wear 265, 42–48 (2008)

    CAS  Article  Google Scholar 

  15. 15.

    Choi, J.H., Kawaguchi, M., Kato, T.: Nanoscale lubricant with strongly bonded phase and mobile phase. Tribol. Lett. 15, 353–358 (2003)

    CAS  Article  Google Scholar 

  16. 16.

    Eapen, K.C., Patton, S.T., Smallwood, S.A., Phillips, B.S., Zabinski, J.S.: MEMS lubricants based on bound and mobile phases of hydrocarbon compounds: film deposition and performance evaluation. J. Microelectromech. Syst. 14, 954–960 (2005)

    CAS  Article  Google Scholar 

  17. 17.

    Eapen, K.C., Patton, S.T., Zabinski, J.S.: Lubrication of microelectromechanical systems (MEMS) using bound and mobile phases of Fomblin Zdol (R). Tribol. Lett. 12, 35–41 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    Eapen, K.C., Smallwood, S.A., Zabinski, J.S.: Lubrication of MEMS under vacuum. Surf. Coat. Technol. 201, 2960–2969 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    Eapen, K.C., Patton, S.T., Smallwood, S.A., Nainaparampil, J.J., Zabinski, J.S.: Aging of a fluorinated lubricant on bare and DLC-coated silicon-based MEMS. Surf. Coat. Technol. 197, 270–277 (2005)

    CAS  Article  Google Scholar 

  20. 20.

    Smallwood, S.A., Eapen, K.C., Patton, S.T., Zabinski, J.S.: Performance results of MEMS coated with a conformal DLC. Wear 260, 1179–1189 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of perfluoropolyalkylether films on amorphous carbon surfaces. J. Chem. Phys. 110, 3129–3137 (1999)

    CAS  Article  Google Scholar 

  22. 22.

    Hsiao, E., Kim, D., Kim, S.H.: Effects of ionic side groups attached to polydimethylsiloxanes on lubrication of silicon oxide surfaces. Langmuir 25, 9814–9823 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    Grierson, D.S., Flater, E.E., Carpick, R.W.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    Schmale, D.T., Bourcier, R.J.: SAND87-0742. Sandia National Labs (1987)

  25. 25.

    Bowles, A.P., Hsia, Y.T., Jones, P.M., Schneider, J.W., White, L.R.: Quasi-equilibrium AFM measurement of disjoining pressure in lubricant nano-films I: Fomblin Z03 on silica. Langmuir 22, 11436–11446 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    Mate, C.M., Lorenz, M.R., Novotny, V.J.: Atomic force microscopy of polymeric liquid-films. J. Chem. Phys. 90, 7550–7555 (1989)

    CAS  Article  Google Scholar 

  27. 27.

    Hu, J., Xiao, X.D., Salmeron, M.: Scanning polarization force microscopy—a technique for imaging liquids and weakly adsorbed layers. Appl. Phys. Lett. 67, 476–478 (1995)

    CAS  Article  Google Scholar 

  28. 28.

    Asay, D.B., Hsiao, E., Kim, S.H.: Corrected direct force balance method for atomic force microscopy lateral force calibration. Rev. Sci. Instrum. 80, 066101–066103 (2009)

    Article  Google Scholar 

  29. 29.

    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)

    CAS  Article  Google Scholar 

  30. 30.

    Zanoria, E.S., Danyluk, S., McNallan, M.J.: Formation of cylindrical sliding-wear debris on silicon in humid conditions and elevated-temperatures. Tribol. Trans. 38, 721–727 (1995)

    CAS  Article  Google Scholar 

  31. 31.

    Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)

    CAS  Article  Google Scholar 

  32. 32.

    Liu, W.M., Ye, C.F., Gong, Q.Y., Wang, H.Z., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)

    CAS  Article  Google Scholar 

  33. 33.

    Xia, Y.Q., Sasaki, S., Murakami, T., Nakano, M., Shi, L., Wang, H.Z.: Ionic liquid lubrication of electrodeposited nickel-Si3N4 composite coatings. Wear 262, 765–771 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12, 163–169 (2002)

    CAS  Article  Google Scholar 

  35. 35.

    Crank, J.: The Mathematics of Diffusion, 2nd ed., pp. 1–414. Clarendon Press, Oxford (1975)

  36. 36.

    Asay, D.B., Barnette, A.L., Kim, S.H.: Effects of surface chemistry on structure and thermodynamics of water layers at solid–vapor interfaces. J. Phys. Chem. C 113, 2128–2133 (2009)

    CAS  Article  Google Scholar 

  37. 37.

    Lane, J.M.D., Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Water penetration of damaged self-assembled monolayers. Langmuir 24, 5734–5739 (2008)

    CAS  Article  Google Scholar 

  38. 38.

    Foster, M., D’Agostino, M., Passno, D.: Water on MgO(100)—an infrared study at ambient temperatures. Surf. Sci. 590, 31–41 (2005)

    CAS  Article  Google Scholar 

  39. 39.

    Chumaevskii, N.A., Rodnikova, M.N.: Some peculiarities of liquid water structure. J. Mol. Liq. 106, 167–177 (2003)

    CAS  Article  Google Scholar 

  40. 40.

    Du, Q., Superfine, R., Freysz, E., Shen, Y.R.: Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70, 2313–2316 (1993)

    CAS  Article  Google Scholar 

  41. 41.

    Ewing, G.E.: Thin film water. J. Phys. Chem. B 108, 15953–15961 (2004)

    CAS  Article  Google Scholar 

Download references


This study was supported by the National Science Foundation (Grant No. CMS-0528141 and CMS-0637028). The authors gratefully acknowledge Dr. D. Kim for his help with the construction of the pin-on-disc tribometer.

Author information



Corresponding author

Correspondence to Seong H. Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsiao, E., Bradley, L.C. & Kim, S.H. Improved Substrate Protection and Self-Healing of Boundary Lubrication Film Consisting of Polydimethylsiloxane with Cationic Side Groups. Tribol Lett 41, 33–40 (2011).

Download citation


  • Boundary lubrication film
  • Self-healing
  • PDMS