Abstract
The dynamics of frictional motion have been studied for hundreds of years, yet many key aspects of these important processes are not understood. The main challenge in predicting frictional response is the complexity of highly non-equilibrium processes going on in any tribological contact. This includes the continuous detachment and reattachment of multiple microscopic junctions at the sliding interface, the kinetics of which are controlled by the interface temperature. Our experiments reveal a non-monotonic enhancement of dry nanoscale friction at cryogenic temperatures for different material classes. We propose a model that reproduces the experimental observations and shows that the peak in temperature dependence of friction emerges from two competing processes acting at the interface: the thermally activated formation as well as the rupturing of an ensemble of atomic contacts. Our experiments and simulations provide a direct link between the temperature and velocity dependencies of friction, thus offering a new conceptual framework to describe the dynamics of dry nanoscale friction.
Similar content being viewed by others
References
Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)
Bormuth, V., Varga, V., Howard, J., Schaffer, E.: Protein friction limits diffusive and directed movements of kinesin motor on microtubules. Science 325, 870–873 (2009)
Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)
Budakian, R., Putterman, S.J.: Correlation between charge transfer and stick–slip friction at a metal–insulator interface. Phys. Rev. Lett. 85, 1000–1003 (2000)
Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285–288 (2001)
Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)
Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)
Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)
Dudko, O., Filippov, A.E., Klafter, J., Urbakh, M.: Dynamical force spectroscopy: a Fokker–Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)
Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)
Kim, W.K., Falk, M.L.: Accelerated molecular dynamics simulation of AFM experiments using the bond-boost method. Mater. Res. Soc. Symp. Proc. 1085E, 1085-T02-02 (2008)
Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond–diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112, 9358–9369 (2008)
Steiner, P., Roth, R., Gnecco, E., Baratoff, E., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)
Szoszkiewicz, R., Riedo, E., Riedo, E.: Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 85, 033105 (2005)
Sills, S., Gray, T., Overney, R.M.: Molecular dissipation phenomena of nanoscopic friction in the heterogeneous relaxation regime of a glass former. J. Chem. Phys. 123, 134902 (2005)
Jansen, L., Schirmeisen, A., Hedrick, J.L., Lantz, M.A., Knoll, A., Cannara, R., Gotsmann, B.: Nanoscale frictional dissipation into shear-stressed polymer relaxations. Phys. Rev. Lett. 102, 236101 (2009)
Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)
Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to a thermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)
Schirmeisen, A., Jansen, L., Holscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)
Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)
Barel, I., Urbakh, M., Jansen, L., Schirmeisen A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 103, (2010)
Sader, J.E., Larson, I., Mulvaney, P., White, L.R.: Method for the calibration of atomic-force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995)
Marti, O.: In: Bhushan, B. (ed.) Handbook of micro/nano tribology. CRC, Boca Raton (1990)
Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.L.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75, 415–421 (2004)
Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)
Dudko, O.K., Filippov, A.E., Klafter, J., Urbakh, M.: Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003)
Muser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)
Abel, D., Krylov, S.Yu., Frenken, J.W.M.: Atomic-scale friction experiments reconsidered in the light of rapid contact dynamics. Phys. Rev. Lett. 99, 166102 (2007)
Chen, J., Ratera, I., Park, J.Y., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 236102 (2006)
Acknowledgments
Discussions with and support by Hendrik Hölscher (University of Karlsruhe) and Harald Fuchs (University of Münster) are gratefully acknowledged. The study conducted in Tel Aviv, as part of the European Science Foundation EUROCORES Program FANAS (CRP ACOF and AQUALUBE), was supported by the Israel Science Foundation (1109/09), and the EC Sixth Framework Program ERASCT-2003-980409. The study conducted in Münster was supported by the German Science Foundation DFG (Grant SCHI 619/6-1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barel, I., Urbakh, M., Jansen, L. et al. Temperature Dependence of Friction at the Nanoscale: When the Unexpected Turns Normal. Tribol Lett 39, 311–319 (2010). https://doi.org/10.1007/s11249-010-9675-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11249-010-9675-4