Skip to main content
Log in

Temperature Dependence of Friction at the Nanoscale: When the Unexpected Turns Normal

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The dynamics of frictional motion have been studied for hundreds of years, yet many key aspects of these important processes are not understood. The main challenge in predicting frictional response is the complexity of highly non-equilibrium processes going on in any tribological contact. This includes the continuous detachment and reattachment of multiple microscopic junctions at the sliding interface, the kinetics of which are controlled by the interface temperature. Our experiments reveal a non-monotonic enhancement of dry nanoscale friction at cryogenic temperatures for different material classes. We propose a model that reproduces the experimental observations and shows that the peak in temperature dependence of friction emerges from two competing processes acting at the interface: the thermally activated formation as well as the rupturing of an ensemble of atomic contacts. Our experiments and simulations provide a direct link between the temperature and velocity dependencies of friction, thus offering a new conceptual framework to describe the dynamics of dry nanoscale friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Bormuth, V., Varga, V., Howard, J., Schaffer, E.: Protein friction limits diffusive and directed movements of kinesin motor on microtubules. Science 325, 870–873 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  CAS  ADS  Google Scholar 

  4. Budakian, R., Putterman, S.J.: Correlation between charge transfer and stick–slip friction at a metal–insulator interface. Phys. Rev. Lett. 85, 1000–1003 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285–288 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Dudko, O., Filippov, A.E., Klafter, J., Urbakh, M.: Dynamical force spectroscopy: a Fokker–Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)

    Article  CAS  ADS  Google Scholar 

  10. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)

    Article  ADS  Google Scholar 

  11. Kim, W.K., Falk, M.L.: Accelerated molecular dynamics simulation of AFM experiments using the bond-boost method. Mater. Res. Soc. Symp. Proc. 1085E, 1085-T02-02 (2008)

    Google Scholar 

  12. Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond–diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112, 9358–9369 (2008)

    Google Scholar 

  13. Steiner, P., Roth, R., Gnecco, E., Baratoff, E., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)

    Article  ADS  Google Scholar 

  14. Szoszkiewicz, R., Riedo, E., Riedo, E.: Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 85, 033105 (2005)

    Article  ADS  Google Scholar 

  15. Sills, S., Gray, T., Overney, R.M.: Molecular dissipation phenomena of nanoscopic friction in the heterogeneous relaxation regime of a glass former. J. Chem. Phys. 123, 134902 (2005)

    Article  ADS  PubMed  Google Scholar 

  16. Jansen, L., Schirmeisen, A., Hedrick, J.L., Lantz, M.A., Knoll, A., Cannara, R., Gotsmann, B.: Nanoscale frictional dissipation into shear-stressed polymer relaxations. Phys. Rev. Lett. 102, 236101 (2009)

    Article  ADS  PubMed  Google Scholar 

  17. Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)

    Article  CAS  Google Scholar 

  18. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to a thermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)

    Article  ADS  PubMed  Google Scholar 

  19. Schirmeisen, A., Jansen, L., Holscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)

    Article  ADS  Google Scholar 

  20. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Barel, I., Urbakh, M., Jansen, L., Schirmeisen A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 103, (2010)

  22. Sader, J.E., Larson, I., Mulvaney, P., White, L.R.: Method for the calibration of atomic-force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995)

    Article  CAS  ADS  Google Scholar 

  23. Marti, O.: In: Bhushan, B. (ed.) Handbook of micro/nano tribology. CRC, Boca Raton (1990)

    Google Scholar 

  24. Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.L.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75, 415–421 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Dudko, O.K., Filippov, A.E., Klafter, J., Urbakh, M.: Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Muser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Article  Google Scholar 

  28. Abel, D., Krylov, S.Yu., Frenken, J.W.M.: Atomic-scale friction experiments reconsidered in the light of rapid contact dynamics. Phys. Rev. Lett. 99, 166102 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Chen, J., Ratera, I., Park, J.Y., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 236102 (2006)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgments

Discussions with and support by Hendrik Hölscher (University of Karlsruhe) and Harald Fuchs (University of Münster) are gratefully acknowledged. The study conducted in Tel Aviv, as part of the European Science Foundation EUROCORES Program FANAS (CRP ACOF and AQUALUBE), was supported by the Israel Science Foundation (1109/09), and the EC Sixth Framework Program ERASCT-2003-980409. The study conducted in Münster was supported by the German Science Foundation DFG (Grant SCHI 619/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schirmeisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barel, I., Urbakh, M., Jansen, L. et al. Temperature Dependence of Friction at the Nanoscale: When the Unexpected Turns Normal. Tribol Lett 39, 311–319 (2010). https://doi.org/10.1007/s11249-010-9675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9675-4

Keywords

Navigation