Skip to main content
Log in

Substituent Effect on the Reactivity of Alkylated Triphenyl Phosphorothionates in Oil Solution in the Presence of Iron Particles

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of the substituent attached to the phenyl rings on the reactivity of alkylated triphenyl phosphorothionates (t-butyl TPPT (b-TPPT) and p-nonyl TPPT (n-TPPT)) in oil solution at high temperature (423 and 473 K) was investigated by means of Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The FT-IR and NMR results show that the alkylated TPPTs were highly thermally stable and did not completely decompose in oil, even upon heating at 423 K for 168 h and at 473 K for 72 h, with and without steel filings and iron particles (both metallic iron and iron oxide particles). The reaction of alkylated TPPTs was found to start with the scission of the P=S bond to yield alkylated triphenyl phosphate. The kinetics of the thermo-oxidative reaction was slower when steel filings and iron particles were added to the oil solutions during the heating experiments. The reactivity of the unsubstituted molecule (TPPT) was higher than that of alkylated TPPTs at 423 K, while at 473 K TPPT and n-TPPT were more reactive than b-TPPT. In the case of the experiments performed at 473 K in the presence of steel filings or metallic iron or iron oxide particles, the reactivity of the alkylated TPPT molecules decreased with the length of the alkyl chain bound to the phenyl rings. The XPS results show that a reaction layer consisting of carbon, oxygen, phosphorus and iron was formed on the 100Cr6 steel filings immersed for 72 h in oil solutions containing alkylated TPPTs and heated at 473 K. Sulphur was neither detected on the surface nor in the composition vs depth profile. During the heating experiments, the base oil (PAO) was oxidized. At 423 K, the alkylated TPPTs had a strong antioxidant effect, which was found to be more pronounced upon increasing the length of the alkyl chain bound to the phenyl rings. At 473 K, the TPPTs did not inhibit the oxidation of the base oil as effectively as at 423 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Kubsh, J.: Three-way catalyst deactivation associated with oil-derived poisons. In: Bode, H. (ed.) Materials Aspects in Automotive Catalytic Converters, pp. 215–222. Wiley-VCH Verlag GmbH & Co, Weinheim (2003)

    Google Scholar 

  2. Mang, T., Dresel, W. (eds.): Lubricants and Lubrication, p. 850. Wiley, New York (2007)

    Google Scholar 

  3. Rudnick, L.R. (ed.): Lubricant Additives: Chemistry and Applications, p. 790. Marcel Dekker Inc, New York (2003)

    Google Scholar 

  4. Gellman, A.J., Spencer, N.D.: Surface chemistry in tribology. J. Eng. Tribol. 216(6), 443–461 (2002)

    CAS  Google Scholar 

  5. Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M., Bancroft, G.M.: Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38(1), 15–39 (2005)

    Article  CAS  Google Scholar 

  6. Spikes, H.A.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)

    Article  CAS  Google Scholar 

  7. McDonald, R.A.: Zinc dithiophosphates. In: Rudnick, L.R. (ed.) Lubricant Additives: Chemistry and Applications, pp. 29–43. Marcel Dekker, New York (2003)

    Chapter  Google Scholar 

  8. Rasberger, M.: Oxidative degradation and stabilization of mineral oil based lubricants. In: Mortier, R.M., Orszulik, S.T. (eds.) Chemistry and Technology of Lubricants, pp. 98–143. Blackie Academic & Professional, London (1997)

    Google Scholar 

  9. Willermet, P.A., Carter, R.O., Schmitz, P.J., Everson, M., Scholl, D.J., Weber, W.H.: Formation, structure, and properties of lubricant-derived antiwear films. Lubr. Sci. 9(4), 325–348 (1997)

    Article  CAS  Google Scholar 

  10. Jones, R.B., Coy, R.C.: The chemistry and thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24(1), 91–97 (1981)

    ADS  CAS  Google Scholar 

  11. Olree, R.M., McMillan, M.L.: How Much ZDP is Enough? SAE Technical Papers, 2004 (Paper No. 2004-01-2986)

  12. Spikes, H.A.: Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 20(2), 103–136 (2008)

    Article  CAS  Google Scholar 

  13. Spikes, H.A.: Beyond ZDDP. Lubr. Sci. 20(2), 77–78 (2008)

    Article  Google Scholar 

  14. Hilgetag, G., Teichmann, H.: The alkylating properties of alkyl thiophosphates. Angew. Chem. Int. Ed. 4(11), 914–922 (1965)

    Article  CAS  Google Scholar 

  15. Teichmann, H., Hilgetag, G.: Nucleophilic reactivity of the thiophosphoryl group. Angew. Chem. Int. Ed. 6(12), 1013–1023 (1967)

    Article  CAS  Google Scholar 

  16. Pearson, R.G.: Hard and Soft Acids and Bases, p. 480. Dowden Hutchinson & Ross, Stroudsburg, PA (1973)

    Google Scholar 

  17. Pearson, R.G.: Chemical Hardness, p. 198. Wiley, New York (1997)

    Book  Google Scholar 

  18. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)

    Article  CAS  Google Scholar 

  19. Pearson, R.G.: Hard and soft acids and bases, HSAB, Part I, fundamental principles. J. Chem. Educ. 45(9), 581–586 (1968)

    Article  CAS  Google Scholar 

  20. Rossi, A., Piras, F.M., Kim, D., Gellman, A.J., Spencer, N.D.: Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress. Tribol. Lett. 23(3), 197–208 (2006)

    Article  CAS  Google Scholar 

  21. Mangolini, F., Rossi, A., Spencer, N.D.: Reactivity of triphenyl phosphorothionate in lubricant oil solution. Tribol. Lett. 35(1), 31–43 (2009)

    Article  CAS  Google Scholar 

  22. Braun, J.: Additives. In: Mang, T., Dresel, W. (eds.) Lubricants and Lubrication, pp. 88–118. Wiley, New York (2007)

    Google Scholar 

  23. Migdal, C.A.: Antioxidants. In: Rudnick, L.R. (ed.) Lubricant Additives: Chemistry and Applications, pp. 1–27. Marcel Dekker, New York (2003)

    Chapter  Google Scholar 

  24. Mangolini, F., Rossi, A., Spencer, N.D.: Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribol. Int. (2010). (in press)

  25. Heuberger, R.: Combinatorial study of the tribochemistry of anti-wear lubricant additives. PhD Thesis no. 17207, ETH Zurich, Zurich, Switzerland (2007)

  26. Heuberger, R., Rossi, A., Spencer, N.D.: Reactivity of alkylated phosphorothionates with steel: a tribological and surface-analytical study. Lubr. Sci. 20(2), 79–102 (2008)

    Article  CAS  Google Scholar 

  27. Koyama, M., Hoyakawa, J., Onodera, T., Ito, K., Tsuboi, H., Endou, A., Kubo, M., DelCarpio, C.A., Miyamoto, A.: Tribochemical reaction dynamics of phosphoric ester lubricant additive by using a hybrid tight-binding quantum chemical molecular dynamics method. J. Phys. Chem. B 110(35), 17507–17511 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Additive Data Sheets, Ciba Speciality Chemicals. Basel, Switzerland (2003)

  29. Vogel, I., Svehla, G.: Textbook of Macro and Semimicro Qualitative Inorganic Analysis, p. 605. Longman, New York (1979)

    Google Scholar 

  30. Socrates, G.: Infrared and Raman Characteristic Group Frequencies, p. 347. Wiley, Chichester (2001)

    Google Scholar 

  31. Harris, R.K., Becker, E.D., Cabral De Menezes, S.M., Goodfellow, R., Granger, P.: NMR Nomenclature. Nuclear spin properties and conventions for chemical shifts. Pure Appl. Chem. 73(11), 1795–1818 (2001)

    Article  CAS  Google Scholar 

  32. Scofield, J.H.: Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8(2), 129–137 (1976)

    Article  CAS  Google Scholar 

  33. Reilman, R.F., Msezane, A., Manson, S.T.: Relative intensities in photoelectron spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom. 8(5), 389–394 (1976)

    Article  CAS  Google Scholar 

  34. Briggs, D., Grant, J.T. (eds.): Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, p. 899. IM Publications, Chichester (2003)

    Google Scholar 

  35. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979)

    Article  CAS  Google Scholar 

  36. Bellamy, L.J.: The Infra-red Spectra of Complex Molecules, p. 433. Chapman and Hall, London (1975)

    Google Scholar 

  37. Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G.: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, p. 503. Academic Press, San Diego (1991)

    Google Scholar 

  38. Roeges, N.P.G.: A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, p. 340. Wiley, Chichester (1994)

    Google Scholar 

  39. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectroscopic Identification of Organic Compounds, p. 502. Wiley, New York (2005)

    Google Scholar 

  40. Thomas, L.C.: The identification of functional groups in organophosphorus compounds. In: Belcher, R., Anderson, D.M.W. (eds.) The Analysis of Organic Materials, vol. 7, p. 121. Academic Press, London (1974)

    Google Scholar 

  41. Chittenden, R.A., Thomas, L.C.: Characteristic infra-red absorption frequencies of organophosphorus compounds—III. Phosphorus-sulphur and phosphorus-selenium bonds. Spectrochim. Acta 20(11), 1679–1696 (1964)

    Article  ADS  CAS  Google Scholar 

  42. Thomas, L.C., Chittenden, R.A.: Characteristic infrared absorption frequencies of organophosphorus compounds—II. P–O–(X) bonds. Spectrochim. Acta 20(3), 489–502 (1964)

    Article  ADS  CAS  Google Scholar 

  43. Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy, p. 430. Wiley, New York (2005)

    Google Scholar 

  44. Günther, H.: NMR Spectroscopy - Basic Principles, Concepts, and Applications in Chemistry, p. 581. Wiley, New York (1995)

    Google Scholar 

  45. Hesse, M., Meier, H., Zeeh, B.: Spektroskopische Methoden in der Organischen Chemie, 3. überarbeitete Auflage. Georg Thieme Verlag Stuttgart, New York (1987)

    Google Scholar 

  46. Berger, S., Braun, S., Kalinowski, H.-O.: NMR Spectroscopy of the Non-metallic Elements. Wiley, New York (1997). 1082

    Google Scholar 

  47. Crutchfield, M.M., Dugan, C.H., Letcher, J.H., Mark, V., Van Wazer, J.R.: P31 nuclear magnetic resonance. In: Grayson, M., Griffith, E.J. (eds.) Topics in Phophorus Chemistry, vol. 5, p. 492. Wiley, New York (1967)

    Google Scholar 

  48. Quin, L.D.: A Guide to Organophosphorus Chemistry, p. 408. Wiley, New York (2000)

    Google Scholar 

  49. Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy, p. 547. Academic Press, London (1990)

    Google Scholar 

  50. Adhvaryu, A., Perez, J.M., Singh, I.D., Tyagi, O.S.: Spectroscopic studies of oxidative degradation of base oils. Energy Fuels 12(6), 1369–1374 (1998)

    Article  CAS  Google Scholar 

  51. Eglin, M., Rossi, A., Spencer, N.D.: X-ray photoelectron spectroscopy analysis of tribostressed samples in the presence of ZnDTP: a combinatorial approach. Tribol. Lett. 15(3), 199–209 (2003)

    Article  CAS  Google Scholar 

  52. Onyiriuka, E.C.: Zinc phosphate glass surfaces studied by XPS. J. Non-Cryst. Solids 163(3), 268–273 (1993)

    Article  ADS  CAS  Google Scholar 

  53. Coates, J.P., Setti, L.C.: Infrared spectroscopic methods for the study of lubricant oxidation products. ASLE Trans. 29(3), 394–401 (1986)

    CAS  Google Scholar 

  54. Coy, R.C., Jones, R.B.: The thermal degradation and ep performance of zinc dialkyldithiophosphate additives in white oil. ASLE Trans. 24(1), 77–90 (1981)

    CAS  Google Scholar 

  55. Dickert, J.J.J., Rowe, C.N.: The thermal decomposition of metal O,O-dialkylphosphorodithioates. J. Org. Chem. 32(3), 647–653 (1967)

    Article  CAS  Google Scholar 

  56. Spedding, H., Watkins, R.C.: The antiwear mechanism of ZDDP’S Part I. Tribol. Int. 15(1), 9–12 (1982)

    Article  CAS  Google Scholar 

  57. Mortimer, F.S.: Vibrational assignment and rotational isomerism in some simple organic phosphates. Spectrochim. Acta 9(4), 270–281 (1957)

    Article  ADS  CAS  Google Scholar 

  58. Hernandez, J., Goycoolea, F.M., Zepeda-Rivera, D., Juarez-Onofre, J., Martunez, K., Lizardi, J., Salas-Reyes, M., Gordillo, B., Velazquez-Contreras, C., Garcia-Barradas, O., Cruz-Sanchez, S., Dominguez, Z.: Substituent effects on the 31P NMR chemical shifts of arylphosphorothionates. Tetrahedron 62(11), 2520–2528 (2006)

    Article  CAS  Google Scholar 

  59. Pearson, R.G., Songstad, J.: Application of the principle of hard and soft acids and bases to organic chemistry. J. Am. Chem. Soc. 89(8), 1827–1836 (1967)

    Article  CAS  Google Scholar 

  60. Ribeaud, M.: Volatility of phosphorus-containing anti-wear agents for motor oils. Lubr. Sci. 18(3), 231–241 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the ETH Research Commission for its support of this work. Dr. H. Camenzind (Ciba Speciality Chemicals, Basel, Switzerland) is thanked for supplying the pure additive. Mrs. D. Sutter and Mr. M. Schneider kindly performed the NMR and the elemental analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangolini, F., Rossi, A. & Spencer, N.D. Substituent Effect on the Reactivity of Alkylated Triphenyl Phosphorothionates in Oil Solution in the Presence of Iron Particles. Tribol Lett 40, 375–394 (2010). https://doi.org/10.1007/s11249-010-9659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9659-4

Keywords

Navigation