Skip to main content
Log in

Erosive Wear Mechanism of New SiC/SiC Composites by Solid Particles

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A solid-particle erosive wear test by impinging silicon carbide (SiC) powders was carried out at room temperature over a range of median particle sizes of 425–600 μm, speed of 100 m/s and impact angle of 90° and assessed by wear measurements and scanning electron microscopy. Erosive wear behaviour was examined on newly fabricated nano-powder infiltration and transient eutectoid (NITE) SiC/SiC composites and two commercial composites by the chemical vapour infiltration (CVI) and NITE fabrication route. Microstructural observation was performed to examine the correlation between erosive wear behaviours and fabrication impurities. Conspicuous defects were observed in the prototype materials as the forms of porosity, fibre deformation, residual oxide, pyrolytic carbon (PyC) deformation, PyC cleavage, among others. Erosive wear behaviour was rather serious in the prototype of fabricated composites, which employ pre-SiC fibre and phenolic resin. Two dominant erosive wear mechanisms were observed: delamination of constituents, mainly caused by erosive crack propagation, and fragmentation and detachment of constituents, which usually resulted from erosive impact. A unit size of delamination was the most decisive factor affecting wear volume. The bonding strength of each constituent was mostly affected by various forms of porosities. Therefore, the fundamental cause and subsequent results must be carefully elucidated. The correlation of microstructural defect and wear behaviour was investigated with the aim of reducing dominant wear by improving fabrication conditions. The final product of the cost-effective composite had a 2.5-fold higher resistance than the commercial CVI composite. Consequently, by controlling fabrication impurities, we have been successful in developing and improving a new fabrication technique; consequently, the known defects are rarely observed in final product. A schematic wear model of erosive wear mechanisms is proposed for the newly fabricated SiC/SiC composites under particle erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Brennan, J.J., Prewo, K.M.: Silicon carbide fibre reinforced glass–ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17(8), 2371–2383 (1982)

    Article  CAS  Google Scholar 

  2. Sternitzke, M., Dupas, E., Twigg, P., Derby, B.: Surface mechanical properties of alumina matrix nanocomposites. Acta Mater. 45(10), 3963–3973 (1997)

    Article  CAS  Google Scholar 

  3. Prouhet, S., Camus, G., Labrugere, C., Guette, A., Martin, E.: Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase. J. Am. Ceram. Soc. 77(3), 649–656 (1994)

    Article  CAS  Google Scholar 

  4. Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Mechanical properties of 3D fiber reinforced C/SiC composites. Mater. Sci. Eng. A 300(1–2), 196–202 (2001)

    Google Scholar 

  5. Mogilevsky, P., Werner, A., Dudek, H.J.: Application of diffusion barriers in composite materials. Mater. Sci. Eng. A 242(1–2), 235–247 (1998)

    Google Scholar 

  6. Anya, C.C.: Wet erosive wear of alumina and its composites with SiC nano-particles. Ceram. Int. 24(7), 533–542 (1998)

    Article  CAS  Google Scholar 

  7. Marschall, J., Erlich, D.C., Manning, H., Duppler, W., Ellerby, D., Gasch, M.: Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites. J. Mater. Sci. 39(19), 5959–5968 (2004)

    Article  CAS  Google Scholar 

  8. Bajwa, S., Rainforth, W.M., Lee, W.E.: Sliding wear behaviour of SiC–Al2O3 nanocomposites. Wear 259(1–6), 553–561 (2005)

    Article  CAS  Google Scholar 

  9. Xu, Y., Cheng, L., Zhang, L., Yin, X., Yin, H.: High performance 3D textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. Ceram. Int. 27(5), 565–570 (2001)

    Article  CAS  Google Scholar 

  10. Jones, R.H., Henager Jr., C.H.: Subcritical crack growth processes in SiC/SiC ceramic matrix composites. J. Eur. Ceram. Soc. 25(10 SPEC. ISS.), 1717–1722 (2005)

    Article  CAS  Google Scholar 

  11. Zhan, Y., Zhang, G., Zhuang, Y.: Wear transitions in particulate reinforced copper matrix composites. Mater. Trans. 45(7), 2332–2338 (2004)

    Article  CAS  Google Scholar 

  12. Tuersley, I.P., Hoult, T.P., Pashby, I.R.: The processing of SiC–SiC ceramic matrix composites using a pulsed Nd-YAG laser: part II. The effect of process variables. J. Mater. Sci. 33(4), 963–967 (1998)

    Article  CAS  Google Scholar 

  13. Liu, Y.M., Mitchell, T.E., Wadley, H.N.G.: Anisotropic damage evolution in unidirectional fiber reinforced ceramics. Acta Mater. 45(10), 3981–3992 (1997)

    Article  CAS  Google Scholar 

  14. Routbort, J.L.: Degradation of structural ceramics by erosion. J. Nondestruct. Eval. 15(3–4), 107–112 (1996)

    Article  Google Scholar 

  15. Aigbodion, V.S., Hassan, S.B.: Effects of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites. Mater. Sci. Eng. A 447(1–2), 355–360 (2007)

    Google Scholar 

  16. Hohler, V., Weber, K., Tham, R., James, B., Barker, A., Pickup, I.: Comparative analysis of oblique impact on ceramic composite systems. Int. J. Impact Eng. 26(1–10), 333–344 (2001)

    Article  Google Scholar 

  17. Kobayashi, A.S.: Dynamic fracture of ceramics and ceramic composites. Mater. Sci. Eng. A 143(1–2), 111–117 (1991)

    Google Scholar 

  18. El-Hija, H.A., Krenkel, W., Hugel, S.: Development of C/C-SiC brake pads for high-performance elevators. Int. J. Appl. Ceram. Technol. 2(2), 105–113 (2005)

    Article  CAS  Google Scholar 

  19. Ham, A.L., Yeomans, J.A., Watts, J.F.: Elevated temperature solid particle erosion of silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 203–204, 387–392 (1997)

    Article  Google Scholar 

  20. Sarva, E., Nemat-Nasser, S., McGee, J., Isaacs, J.: The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. Int. J. Impact Eng. 34(2), 277–302 (2007)

    Article  Google Scholar 

  21. Raghuraman, S., Stubbins, J.F., Ferber, M.K., Wereszczak, A.A.: Crack propagation in SiCf/SiC ceramic matrix composite under static and cyclic loading conditions. J. Nucl. Mater. 212–215(Part 1), 840–844 (1994)

    Article  Google Scholar 

  22. Ramulu, M., See, H.-W., Wang, D.H.: Machining of ceramic composite TiB2/SiC by spark erosion. Manuf. Rev. 3(2), 123–129 (1990)

    Google Scholar 

  23. Kim, J.J., Park, S.K.: Solid particle erosion of SiC and SiC–TiB2 composite hot-pressed with Y2O3. Wear 222(2), 114–119 (1998)

    Article  CAS  Google Scholar 

  24. Fang, Q., Sidky, P., Hocking, M.G.: Erosive wear behaviour of aluminium based composites. Mater. Des. 18(4–6), 389–393 (1997)

    CAS  Google Scholar 

  25. Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon carbide whisker/silicon nitride composites. J. Am. Ceram. Soc. 72(5), 791–798 (1989)

    Article  CAS  Google Scholar 

  26. Sykes, M.T., Scattergood, R.O., Routbort, J.L.: Erosion of SiC-reinforced alumina ceramic composites. Composites 18(2), 153–163 (1987)

    Article  CAS  Google Scholar 

  27. Subhash, G., Maiti, S., Geubelle, P.H., Ghosh, D.: Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc. 91(9), 2777–2791 (2008)

    Article  CAS  Google Scholar 

  28. Jianxin, D., Lili, L., Jinlong, Z., Junlong, S.: Erosion wear of laminated ceramic nozzles. Int. J. Refract Metal Hard Mater. 25(3), 263–270 (2007)

    Article  Google Scholar 

  29. Jianxin, D., Lili, L., Mingwei, D.: Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes. Mater. Sci. Eng. A 444(1–2), 120–129 (2007)

    Google Scholar 

  30. Tamura, H., Mutou, Y.: Quantitative analysis of debris clouds from SiC-fiber-reinforced silicon nitride bumpers. Int. J. Impact Eng. 31(9), 1192–1207 (2005)

    Article  Google Scholar 

  31. Al-Dheylan, K.A.: The low velocity impact loading of Al2O3/SiC whisker reinforced ceramic composite. J. Mater. Process. Technol. 155–156(1–3), 1986–1994 (2004)

    Article  Google Scholar 

  32. Medvedovski, E.: Silicon carbide-based ceramics for ballistic protection. Ceram. Trans. 151, 19–35 (2003)

    CAS  Google Scholar 

  33. Badini, C., Fino, P., Ubertalli, G., Taricco, F.: Degradation at 1200°C of a SiC coated 2D-Nicalon/C/SiC composite processed by SICFILL® method. J. Eur. Ceram. Soc. 20(10), 1505–1514 (2000)

    Article  CAS  Google Scholar 

  34. Ham, A.L., Yeomans, J.A., Watts, J.F.: Effect of temperature and particle velocity on the erosion of a silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear 233–235, 237–245 (1999)

    Article  Google Scholar 

  35. Hayun, S., Frage, N., Dariel, M.P., Zaretsky, E., Ashuah, Y.: Dynamic response of B4C-SiC ceramic composites. Ceram. Trans. 178, 147–156 (2006)

    CAS  Google Scholar 

  36. Vanswijgenhoven, E., Wevers, M., Van Der Biest, O.: The transverse strain response of cross-plied fibre-reinforced ceramic–matrix composites. Compos. Sci. Technol. 59(10), 1469–1481 (1999)

    Article  CAS  Google Scholar 

  37. Unal, O., Eckel, A.J., Laabs, F.C.: Mechanical properties and microstructure of oxidized SiC/SiC composites. Ceram. Eng. Sci. Proc. 17(4), 333–341 (1996)

    CAS  Google Scholar 

  38. Akimune, Y.: Impact damage and strength degradation in a silicon carbide reinforced silicon nitride composite. J. Am. Ceram. Soc. 73(10), 3019–3025 (1990)

    Article  CAS  Google Scholar 

  39. Van Roode, M., Ferber, M.K.: Long-term degradation of ceramics for gas turbine applications. Proc. ASME Turbo Expo 1, 305–321 (2007)

    Google Scholar 

  40. Srivastava, V.K.: Damage morphology of C/C-SiC composites under impact tests. Ceram. Trans. 175, 181–187 (2006)

    Google Scholar 

  41. Xu, Y., Cheng, L., Zhang, L., Yin, H., Yin, X.: Microstructure and mechanical properties of three-dimensional textile Hi-Nicalon SiC/SiC composites by chemical vapor infiltration. J. Am. Ceram. Soc. 85(5), 1217–1221 (2002)

    Article  CAS  Google Scholar 

  42. Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass resulting from impact with spheres. J. Am. Ceram. Soc. 60(9–10), 451–458 (1977)

    Article  CAS  Google Scholar 

  43. Wiederhorn, S.M., Lawn, B.R.: Strength degradation of glass impact with sharp particles: I, annealed surfaces. J. Am. Ceram. Soc. 62(1–2), 66–70 (1979)

    Article  CAS  Google Scholar 

  44. Breder, K., de Portu, G., Ritter, J.E., Fabbriche, D.D.: Erosion damage and strength degradation of zirconia-toughened alumina. J. Am. Ceram. Soc. 71(9), 770–775 (1988)

    Article  CAS  Google Scholar 

  45. Ritter, J.E., Choi, S.R., Jakus, K., Whalen, P.J., Rateick, R.G.: Effect of microstructure on the erosion and impact damage of sintered silicon nitride. J. Mater. Sci. 26, 5543–5546 (1991)

    Article  CAS  Google Scholar 

  46. Akimune, Y., Katano, Y., Matoba, K.: Spherical-impact damage and strength degradation in silicon nitrides for automobile turbocharger rotors. J. Am. Ceram. Soc. 72(8), 1422–1428 (1989)

    Article  CAS  Google Scholar 

  47. Shockey, D.A., Rowcliff, D.J., Dao, K.C., Seaman, L.: Particle impact damage in silicon nitride. J. Am. Ceram. Soc. 73(6), 1613–1619 (1990)

    Article  CAS  Google Scholar 

  48. Knight, C.G., Swain, M.V., Chaudhri, M.M.: Impact of small steel spheres on glass surfaces. J. Mater. Sci. 12, 1573–1586 (1977)

    Article  Google Scholar 

  49. Taylor, L.N., Chen, E.P., Kuszmaul, J.S.: Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput. Methods Appl. Mech. Eng. 55, 301–320 (1986)

    Article  Google Scholar 

  50. Mouginot, R., Maugis, D.: Fracture indentation beneath flat and spherical punches. J. Mater. Sci. 20, 4354–4376 (1985)

    Article  Google Scholar 

  51. Evans, G., Wilshaw, T.R.: Dynamic solid particle damage in brittle materials: an appraisal. J. Mater. Sci. 12, 97–116 (1977)

    Article  CAS  Google Scholar 

  52. Liaw, M., Kobayashi, A.S., Emery, A.G.: Theoretical model of impact damage in structural ceramics. J. Am. Ceram. Soc. 67, 544–548 (1984)

    Article  CAS  Google Scholar 

  53. Richerson, D.W., Johansen, K.M.: Ceramic gas turbine engine demonstration program. Final Report, DARPA/Navy Contract N00024-76-C-5352. Garrett Report 21-4410 (1982)

  54. Yoshida, H., Chaudhri, M.M., Hoshi, Y.: Quasistatic indentation and spherical particle impact studies of turbine-grade silicon nitrides. Philos. Mag. A 82(10), 2031–2040 (2002)

    Article  CAS  Google Scholar 

  55. Wang, E.-Q., Levy, A.V.: Erosion behavior of SiC fiber–SiC matrix composites. Wear 138(1–2), 125–136 (1990)

    CAS  Google Scholar 

  56. Ogi, K., Okabe, T., Takahashi, M., Yashiro, S., Yoshimura, A., Ogasawara, T.: Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite. Compos. A 41(4), 489–498 (2010)

    Article  Google Scholar 

  57. Bhatt, R.T., et al.: Impact resistance of uncoated SiC/SiC composites. Mater. Sci. Eng. A 476(1–2), 8–19 (2008)

    Google Scholar 

  58. Choi, S.R.: Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures. J. Am. Ceram. Soc. 91(9), 2963–2968 (2008)

    Article  CAS  Google Scholar 

  59. Komeya, K., Matsui, M.: In: Swain, M.V. (ed.) Materials Science and Technology, vol. 11, pp. 517–565. VCH, Weinheim (1994)

    Google Scholar 

  60. Suh, M.-S., et al.: Friction and wear behavior of structural ceramics sliding against zirconia. Wear 264(9–10), 800–806 (2008)

    Article  CAS  Google Scholar 

  61. Suh, M.-S., et al.: Tribological evaluation of structural ceramics under sliding friction. Int. J. Mod. Phys. B 20(25–27), 4407–4412 (2006)

    Article  CAS  Google Scholar 

  62. Suh, M.-S., Kohyama, A., Hinoki, T.: Mechanical properties and microstructure of SiC/SiC composites fabricated for erosion component. In: First International Symposium of Global COE Program Proceedings, pp. 261–265 (2009)

  63. Suh, M.-S., Kohyama, A.: Erosion wear mechanism of SiCf/SiC composites by solid particles. In: World Tribology Congress 2009 Proceedings, p. 909 (2009)

  64. Suh, M.-S., Kohyama, A.: Effect of porosity on particle erosion wear behavior of lab. Scale SiCf/SiC composites. Int. J. Mod. Phys. B (2010, in press)

  65. Suh, M.-S, Kohyama, A.: Special issues on “in situ” crystallized SiC/SiC composites. In: International Symposium on Advanced Engineering, pp. 439–442 (2009)

  66. Suh, M.-S., et al.: Fabrication of SiCf/SiC by means of “in situ” crystallization of SiC fibers. J. Nucl. Mater. (2010, in press)

  67. DiCarlo, J.A.: In: Narottam, P.B., Bansal, P. (eds.) Handbook of Ceramic Composites, p. 33. Kluwer, Boston (2005)

    Chapter  Google Scholar 

  68. Hinoki, T., Zhang, W., Kohyama, A., Sato, S., Noda, T.: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 258–263(Part 2 B), 1567–1571 (1998)

    Article  Google Scholar 

  69. Zhang, W., Hinoki, T., Katoh, Y., Kohyama, A., Noda, T., Muroga, T., Yu, J.: Crack initiation and growth characteristics in SiC/SiC under indentation test. J. Nucl. Mater. 258–263(Part 2 B), 1577–1581 (1998)

    Article  Google Scholar 

  70. Ferraris, M., Salvo, M., Isola, C., Appendino Montorsi, M., Kohyama, A.: Glass–ceramic joining and coating of SiC/SiC for fusion applications. J. Nucl. Mater. 258–263(Part 2 B), 1546–1550 (1998)

    Article  Google Scholar 

  71. Fenici, P., Frias Rebelo, A.J., Jones, R.H., Kohyama, A., Snead, L.L.: Current status of SiC/SiC composites R&D. J. Nucl. Mater. 258–263(Part 1 A), 215–225 (1998)

    Article  Google Scholar 

  72. Araki, H., Yang, W., Shi, Y., Sato, S., Noda, T., Kohyama, A.: Bending properties of CVI SiCf/SiC composites at elevated temperatures. Ceram. Eng. Sci. Proc. 20(4), 371–378 (1999)

    Article  CAS  Google Scholar 

  73. Katoh, Y., Kotani, M., Kohyama, A., Montorsi, M., Salvo, M., Ferraris, M.: Microstructure and mechanical properties of low-activation glass–ceramic joining and coating for SiC/SiC composites. J. Nucl. Mater. 283–287(Part II), 1262–1266 (2000)

    Article  Google Scholar 

  74. Kohyama, A., Kotani, M., Katoh, Y., Nakayasu, T., Sato, M., Yamamura, T., Okamura, K.: High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J. Nucl. Mater. 283–287(Part I), 565–569 (2000)

    Article  Google Scholar 

  75. Lewinsohn, C.A., Singh, M., Shibayama, T., Hinoki, T., Ando, M., Katoh, Y., Kohyama, A.: Joining of silicon carbide composites for fusion energy applications. J. Nucl. Mater. 283–287(Part II), 1258–1261 (2000)

    Article  Google Scholar 

  76. Hinoki, T., Yang, W., Nozawa, T., Shibayama, T., Katoh, Y., Kohyama, A.: Improvement of mechanical properties of SiC/SiC composites by various surface treatments of fibers. J. Nucl. Mater. 289(1–2), 23–29 (2001)

    Article  CAS  Google Scholar 

  77. Dong, S.M., Katoh, Y., Kohyama, A., Schwab, S.T., Snead, L.L.: Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process. Ceram. Int. 28(8), 899–905 (2002)

    Article  CAS  Google Scholar 

  78. Dong, S., Katoh, Y., Kohyama, A.: Preparation of SiC/SiC composites by hot pressing, using tyranno-SA fiber as reinforcement. J. Am. Ceram. Soc. 86(1), 26–32 (2003)

    Article  CAS  Google Scholar 

  79. Hinoki, T., Jinushi, T., Hirohata, Y., Hashiba, M., Yamauchi, Y., Katoh, Y., Kohyama, A.: Helium gas permeability of SiC/SiC composite developed for blanket component. Fusion Sci. Technol. 43(2), 184–190 (2003)

    Google Scholar 

  80. Yang, W., Kohyama, A., Katoh, Y., Araki, H., Yu, J., Noda, T.: Effect of carbon and silicon carbide/carbon interlayers on the mechanical behavior of tyranno-SA-fiber-reinforced silicon carbide-matrix composites. J. Am. Ceram. Soc. 86(5), 51–856 (2003)

    Article  Google Scholar 

  81. Kotani, M., Inoue, T., Kohyama, A., Katoh, Y., Okamura, K.: Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater. Sci. Eng. A 357(1–2), 376–385 (2003)

    Google Scholar 

  82. Nozawa, T., Ozawa, K., Katoh, Y., Kohyama, A.: Effect of heat treatment on microstructure and mechanical properties of stoichiometric SiC/SiC composites. Mater. Trans. 45(2), 307–310 (2004)

    Article  CAS  Google Scholar 

  83. Katoh, Y., Kohyama, A., Nozawa, T., Sato, M.: SiC/SiC composites through transient eutectic-phase route for fusion applications. J. Nucl. Mater. 329–333(1–3 part A), 587–591 (2004)

    Article  Google Scholar 

  84. Igawa, N., et al.: Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties. J. Phys. Chem. Solids 66(2–4), 551–554 (2005)

    Article  CAS  Google Scholar 

  85. Shimoda, K., Eiza, N., Park, J.-S., Hinoki, T., Kohyama, A., Kondo, S.: High-temperature mechanical property improvements of SiC ceramics by NITE process. Mater. Trans. 47(4), 1204–1208 (2006)

    Article  CAS  Google Scholar 

  86. Shimoda, K., Hinoki, T., Katoh, Y., Kohyama, A.: Development of the tailored SiC/SiC composites by the combined fabrication process of ICVI and NITE methods. J. Nucl. Mater. 384(2), 103–108 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan for a scholarship and the 21 Global COE Program of Kyoto University for partial-financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, MS., Hinoki, T. & Kohyama, A. Erosive Wear Mechanism of New SiC/SiC Composites by Solid Particles. Tribol Lett 41, 503–513 (2011). https://doi.org/10.1007/s11249-010-9658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9658-5

Keywords

Navigation